hello everyone, I have faced this error on my CNN: (Layer 5 is expected to have a different size)

6 次查看(过去 30 天)
I'm trying to implement the CNN algorithm that used on paper (A Deep-Network Solution Towards Model-less Obstacle Avoidance)for Lei Tai, Shaohua Li, and Ming Liu; and when I put their specification of CNN layers; I got the following error: using nnet.cnn.layer.Layer>iInferSize (line 266) Layer 5 is expected to have a different size. if anyone has an idea what is going on, which size they mean? and why I got this error? plese, let me Know.
layers = [imageInputLayer([120 160 1],'Normalization','none');
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64)
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer
classificationLayer()];
  2 个评论
Khadija Al Jabri
Khadija Al Jabri 2017-11-19
if true
% code
% Load the sample data as an |ImageDatastore| object.
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
'nndatasets','DigitDataset');
digitData = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%% Specify Training and Test Sets trainingNumFiles = 50; rng(1) % For reproducibility [trainDigitData,testDigitData] = splitEachLabel(digitData, ... trainingNumFiles,'randomize');
%% Define the Network Layers layers = [imageInputLayer([120 160 1],'Normalization','none');
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64)
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer
classificationLayer()];
%% Specify the Training Options options = trainingOptions('sgdm','MaxEpochs',15, ... 'InitialLearnRate',0.0001);
%% Train the Network Using Training Data convnet = trainNetwork(trainDigitData,layers,options);
%% Classify the Images in the Test Data and Compute Accuracy YTest = classify(convnet,testDigitData); TTest = testDigitData.Labels;
% Calculate the accuracy. accuracy = sum(YTest == TTest)/numel(TTest)
end

请先登录,再进行评论。

采纳的回答

Javier Pinzón
Javier Pinzón 2017-12-1
Hello Khadija,
The error is located in the "NumChannels", it must have the same amout of channels of the filters used in the poir Convolution layer, so, the correct way to write it is:
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,32,'NumChannels', 32);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64)
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer
classificationLayer()];
In other cases, it may be no necessary to specify the number of channels, and let it be automaticaly get.
Hop it helps and thanks if the answer is accepted.
Any question, feel free to ask.
Regards,
Javier
  7 个评论
Javier Pinzón
Javier Pinzón 2017-12-12
Hello Khadija,
you can check this link:
With that examples, you can create an array of an amount of numbers. After that, you can play with the datastore. At this moment I cannot show you an example, unfortunately.
Regards

请先登录,再进行评论。

更多回答(0 个)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by