Ramp Rate constraint in Economic Dispatch using Linprog function
8 次查看(过去 30 天)
显示 更早的评论
I have a problem in implementing ramp rate constraint using linprog function. I have 5 generators with marginal costs, ramp rate limits, min and max generation capacities as linear functions. In short my economic dispatch problem is as follows:
f = [1000 500 0 0 300]; %%Objective function
lb = [0 0 0 0 0]; %%Lower boundary
ub = [5000 9000 3500 1500 8000]; %%Upper boundary
Aeq = [1 1 1 1 1]; %%Equality Constraint
beq = L; %%Total load
Now, the ramp rate constraint: let PG1 be power generated by generator 1(say)
|PG1(k) - PG1(k-1)| <= Ramp rate limit(200);
where k is the optimization period. so how can i implement this using linprog function...?
PG = linprog(f,A,b,Aeq,beq,lb,ub);
2 个评论
采纳的回答
Torsten
2017-11-20
编辑:Torsten
2017-11-20
f = [1000 500 0 0 300]; %%Objective function
A = [];
b = [];
Aeq = [1 1 1 1 1]; %%Equality Constraint
beq = L; %%Total load
lb = [0 0 0 0 0]; %%Lower boundary
ub = [5000 9000 3500 1500 8000]; %%Upper boundary
PG = linprog(f,A,b,Aeq,beq,lb,ub);
A = [eye(5);-eye(5)];
for i=1:288
b = [200+PG(1) ; 83.33+PG(2) ; 100+PG(3) ; 150+PG(4) ; 66.67+PG(5) ; 200-PG(1) ; 83.33-PG(2) ; 100-PG(3) ; 150-PG(4) ; 66.67-PG(5)];
PG = linprog(f,A,b,Aeq,beq,lb,ub);
end
Best wishes
Torsten.
更多回答(1 个)
Matt J
2017-11-18
编辑:Matt J
2017-11-18
n=numel(f);
D=diff(eye(n));
A=[D;-D];
b=200*ones(n,1);
PG = linprog(f,A,b,Aeq,beq,lb,ub);
4 个评论
Aleksandra Komorowska
2020-2-21
Hi,
I'm trying to use this code, but the following error is displayed:
The number of rows in A must be the same as the number of elements of b.
f = [1000 500 0 0 300]; % Objective function
lb = [0 0 0 0 0]; % lower bound
ub = [5000 9000 3500 1500 8000]; % upper bound
L = 20000; % load
D=speye(288);
A=kron([D,-D],eye(5));
b=kron(ones(288*2,1), [200;83.33;100;150;66.7]);
Aeq=kron(speye(288),ones(1,5));
beq=L*ones(288,1);
LB=repmat(lb(:),1,288);
UB=repmat(ub(:),1,288);
F=repmat(f(:),1,288);
PGall = linprog(F,A,b,Aeq,beq,LB,UB)
Do you have any ideas, why?
Best regards,
Aleksandra
Matt J
2020-2-21
编辑:Matt J
2020-2-21
It's because the A and b matrix generated by the code have different numbers of rows. But never mind. Looking back at it now, the problem was probably stated incorrectly. Since there are no changes in any of the problem data from period to period, satisfying the rate constraint is trivial. Just solve the optimization problem for the first period and use that for all later periods.
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!