How can I solve an integral equation with an unknown kernel?
3 次查看(过去 30 天)
显示 更早的评论
The equation I am trying to solve is:
where f(x) and h(x) are both complex and known, and g(x) is an unknown function. Presumably, the result should be a function g(x), however, it is not to be excluded that g(x) could actually be an operator instead. Can this be solved for either cases in MATLAB?
Thanks!
0 个评论
采纳的回答
Torsten
2017-12-1
g is not unique - it can be of any function type you like (we already had this discussion).
g(x)=1/integral_{x=0}^{x=2*pi} f(x)*h(x)dx
or
g(x)=1/(f(x)*h(x)*2*pi)
or
...
Best wishes
Torsten.
10 个评论
Torsten
2017-12-12
Why don't you start from a solution that worked ?
syms L C x
assume (L>0);
h = 1;
g = 5;
y = C-exp(2*g*1i*x/h);
z = C-exp(-2*g*1i*x/h);
prod = y*z*(1+x^2);
Csol = solve(int(prod,x,0,L)-1==0,C);
Best wishes
Torsten.
更多回答(2 个)
John D'Errico
2017-12-1
If g(x) is unknown, then if all you have is a single equation equal to a constant, then there is no simple solution. Or, you can look at it as if there are infinitely many solutions, one of them being a constant function.
Just compute the integral of h(x)*f(x). Take the reciprocal. That is the value of the constant g that will make int(h*f*g) equal 1. So as long as int(h*f) over [0,2*pi] is not identically 0, then A solution is trivial. Yes there may be infinitely many other solutions, but they cannot be found unless you have information as to the functional form of g(x).
11 个评论
John D'Errico
2017-12-4
I don't see why not. Integration is just a linear operator. If g is a constant, then it can be pulled outside the integral.
另请参阅
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!