- To find the maximum Utility use:
Calculation in inter dependency matrix
1 次查看(过去 30 天)
显示 更早的评论
Can someone help me to solve the below-mentioned calculation? i have vectors
A1(221X1), D1(221X1) and P(221X1) and my formula to calculate utility is Utility= (((1-P(1,1))*(D(1,1)/(D(1,1)+A1(1,1)))* V)-C + (((1-P(2,1))*(D(2,1)/(D(2,1)+A1(2,1)))* V)-C +.........till (((1-P(221,1))*(D(221,1)/(D(221,1)+A1(221,1)))* V)-C
My requirement is:
For iteration 1:
% A1= (221X1) random values
% X1= (221X1) calculated values
% D1= (221X1) random values
% utility1= (((1-P(1,1))*(D(1,1)/(D(1,1)+A1(1,1)))* V)-C + (((1-P(2,1))*(D(2,1)/(D(2,1)+A1(2,1)))* V)-C +.........till (((1-P(221,1))*(D(221,1)/(D(221,1)+A1(221,1)))* V)-C%
% store the calculated utilty1 value %
% store the generated A1 vector used in the iteration1 utility calculation %
% store the generated D1 vector used in the iteration1 utility calculation %
% store the calculated P vector used in the iteration1 utility calculation %
start the iteration 2
% Do the same as iteration1 and save all newly generated D1, A1, and P %
%Repeat for 1000 iteration and store the newly generated A1, D1, P vector of size (221X1) and utility of size (1) for 1000 iterations %
%Find the maximum utility of 1000 iteration and show the corresponding D1, P and A1 vectors used in the calculation of that maximum utility%
V= 0.2;
C=0.2;
I= eye(221);
s = string({'CR';'E';'R';'S';'SR'})
s1 = s([2,5])' + (1:20)'
s1 = [s([2,3,2,4]) + [101;1;106;1];s1(:)] + (0:4)
d = {tril(ones(44,4),-1),diag(ones(20,1),-24)}
d{2} = d{2}(:,1:end-4)
dd = repmat({[d{:}]},1,5)
str = cellstr([s(1);s1(:)])
out = [{nan},str(:)';str, num2cell([zeros(1,221);[ones(220,1),blkdiag(dd{:})]]) ];
A= out(2:end,2:end);
for i=1:1000
A1= ( randn(221,1) * 0.1 ) + 0.45;
X11= cell2mat(A)*A1;
P= zeros(221,1);
P(:)= X11(:)/sum(X11)
D1= ( randn(221,1) * 0.1 ) + 0.45;
% Utility= (((1-P(1,1))*(D(1,1)/(D(1,1)+A1(1,1)))* V)-C + (((1-P(2,1))*(D(2,1)/(D(2,1)+A1(2,1)))* V)-C +.........till (((1-P(221,1))*(D(221,1)/(D(221,1)+A1(221,1)))* V)-C
end %
0 个评论
采纳的回答
Basil C.
2018-2-20
编辑:Basil C.
2018-2-20
You could use a 3D matrix to store the new values of A1, D1, P and Utility
result=zeros(221,4,1000);
for (i=1:1000)
A1= ( randn(221,1) * 0.1 ) + 0.45;
X11= cell2mat(A)*A1;
P= zeros(221,1);
P(:)= X11(:)/sum(X11)
D1= ( randn(221,1) * 0.1 ) + 0.45;
Utility=0;
for(j=1:221)
Utility= (((1-P(j))*(D(j)/(D(j)+A1(j)))* V)-C +Utility;
end
result(:,1,i)=A1;
result(:,2,i)=D1;
result(:,3,i)=P;
result(1,4,i)=Utility;
end
[Utility_max,index_max]=max(result(1,4,:));
A1_max=result(:,1,index_max);
D1_max=result(:,2,index_max);
P_max=result(:,3,index_max);
where A1_max, D1_max, P_max are the values of A1, D1, P at maximum Utility
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Sources 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!