Finding probability distributions associated with a cross-validated svm using bayesopt
1 次查看(过去 30 天)
显示 更早的评论
I am finding difficulty in computing the probability of the predictions after training a Support Vector Machine with kfold cross validation and optimizing the hyperparameters using Bayesian optimization.
This is the code I am using
data = [S' U']'; size1 = size(S,1); size2 = size(U,1); theclass = ones((size1+size2),1); theclass(size1+1:end) = -1;
%% Preparing Cross Validation
c = cvpartition((size1+size2),'KFold',100);
%% Optimizing the SVM Classifier
opts = struct('Optimizer','bayesopt','ShowPlots',true,'CVPartition',c,... 'AcquisitionFunctionName','expected-improvement-plus');
svm = fitcsvm(data,theclass,'KernelFunction','rbf',... 'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)
Any help is appreciated
0 个评论
回答(1 个)
Don Mathis
2018-4-5
编辑:Don Mathis
2018-4-5
To get posterior probabilities on a test set using a trained SVM, you can consult this Documentation page:
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Classification 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!