ode45 for the shooting method.
3 次查看(过去 30 天)
显示 更早的评论
I want to predict a constant for the target height for the given ode problem. The target height is highly dependent on the constant alpha. Some one told me to use shooting /iterative methods but I am new for such a method. I need your help.
zspan=[0,400];
v0mat = [1 0.01 1];
zsol = {};
v1sol = {};
v2sol = {};
v3sol = {};
for k=1:size(v0mat,1)
v0=v0mat(k,:);
[z,v]=ode45(@rhs,zspan,v0);
zsol{k}=z;
v1sol{k}=v(:,1);
v2sol{k}=v(:,2);
v3sol{k}=v(:,3);
end
for r=1:length(v2sol)
q(r)=r;
end
for k1 = 1:length(v2sol)
zsol04(k1) = interp1(v2sol{k1}, zsol{k1}, 0.4);
end
figure()
scatter(q,zsol04,'p')
xlabel('q')
ylabel('Height')
function parameters=rhs(z,v)
alpha=0.08116;
db= 2*alpha-(v(1).*v(3))./(2*v(2).^2);
dw= (v(3)./v(2))-(2*alpha*v(2)./v(1));
dgmark= -(2*alpha*v(3)./v(1));
parameters=[db;dw;dgmark];
end
7 个评论
Torsten
2018-4-9
Please read my answer again:
Use "bvp4c" with three boundary conditions at h=0, one boundary condition as v2(height)=0.4 and a free parameter alpha.
Best wishes
Torsten.
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Global or Multiple Starting Point Search 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!