how can I replace the softmax layer with another classifier as svm in convolution network

6 次查看(过去 30 天)
I made deep learning application that using softmax
layers = [ imageInputLayer(varSize); conv1; reluLayer;
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(4,'Stride',2);
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2);
reluLayer();
maxPooling2dLayer(4,'Stride',2)
fc1;
reluLayer();
fc2;
reluLayer();
%returns a softmax layer for classification problems. The softmax layer uses the softmax activation function.
softmaxLayer()
classificationLayer()];
I want to use SVM and random forest classifiers instead of softmax. and use a deep learning for feature extraction. I hope I can get a link for a tutorial.

回答(4 个)

Johannes Bergstrom
Johannes Bergstrom 2018-4-17
Here is an example: https://www.mathworks.com/help/nnet/examples/feature-extraction-using-alexnet.html

Nagwa megahed
Nagwa megahed 2022-4-21
the only possible solution is to save the extracted features by the deep model , then use this features as an input to the SVM or any other wanted classifier.

Saifullah Razali
Saifullah Razali 2019-2-19
hello.. just wondering.. have u got the answer yet? i have the same exact problem

Mahzad Pirghayesh
Mahzad Pirghayesh 2021-1-28
I have the same problem too,can any body help us

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by