how can I replace the softmax layer with another classifier as svm in convolution network
6 次查看(过去 30 天)
显示 更早的评论
I made deep learning application that using softmax
layers = [ imageInputLayer(varSize); conv1; reluLayer;
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(4,'Stride',2);
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2);
reluLayer();
maxPooling2dLayer(4,'Stride',2)
fc1;
reluLayer();
fc2;
reluLayer();
%returns a softmax layer for classification problems. The softmax layer uses the softmax activation function.
softmaxLayer()
classificationLayer()];
I want to use SVM and random forest classifiers instead of softmax. and use a deep learning for feature extraction. I hope I can get a link for a tutorial.
回答(4 个)
Johannes Bergstrom
2018-4-17
Here is an example: https://www.mathworks.com/help/nnet/examples/feature-extraction-using-alexnet.html
Nagwa megahed
2022-4-21
the only possible solution is to save the extracted features by the deep model , then use this features as an input to the SVM or any other wanted classifier.
Saifullah Razali
2019-2-19
hello.. just wondering.. have u got the answer yet? i have the same exact problem
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!