How to solve the coupled second order differential equations by using "ODE45"?
2 次查看(过去 30 天)
显示 更早的评论
Hello,
I try to solve the coupled second order differential equations with ODE45.
But my answer was weird.
My system is two defree of freedom system including spring and damper.
So, the equations are
m1*x1'' + (c1+c2)*x1' + (k1+k2)*x1 - c2*x2' - k2*x2 = 0;
m2*x2'' + x2*x2' + k2*x2 - c2*x1' - k2*x1 = F(t);
And I changed the above equations,
x1'' = v1' = ...
x2'' = v2' = ...
Here are my code..
% mx1'' = -(k1+k2)x1 - (c1+c2)x1' + k2 x2 + c2 x2'
% mx2'' = -k2 x2 - c2 x2' + k2 x1 + c2 x1' + F
tspan = linspace(0,10*pi,2000);
h = tspan(2) - tspan(1);
xini = [0; 0; 0; 0];
[t,x] = ode45(@T2_func, tspan, xini);
------ Function ------
function dxdt = T2_func(t,x)
%%Constants
m1 = 1; % [kg]
m2 = 1; % [kg]
k1 = 10; % [N/m]
k2 = 10; % [N/m]
c1 = 1; % [Ns/m]
c2 = 1; % [Ns/m]
%%Force
p = 10 * ones(1,length(t)); % [N]
%%Matrix
F = zeros(2, length(t));
F(2,:) = p/m2;
K11 = -(k1+k2)/m1;
K12 = k2/m1;
K21 = -k2/m2;
K22 = k2/m2;
Kmat = [K11 K12; K21 K22];
C11 = -(c1+c2)/m1;
C12 = c2/m1;
C21 = -c2/m2;
C22 = c2/m2;
Cmat = [C11 C12; C21 C22];
%%Function
dxdt = zeros(4,1);
dxdt(1) = x(2);
dxdt(2) = - Kmat(1,1)*x(1) - Cmat(1,1)*x(2) + Kmat(1,2)*x(3) + Cmat(1,2)*x(4) + F(1);
dxdt(3) = x(4);
dxdt(4) = - Kmat(2,1)*x(3) - Cmat(2,1)*x(4) + Kmat(2,2)*x(1) + Cmat(2,2)*x(2) + F(2);
Thank you.
0 个评论
采纳的回答
Torsten
2018-4-23
You already included the correct signs of the coefficients in the definition of Kmat and Cmat. Thus all terms in dxdt(2) and dxdt(4) must have a "+" sign.
Furthermore, in your original set of equations, K11 = -k1/m1 instead of K11 = -(k1+k2)/m1.
Additionally, t in T2_func will always be a scalar. Thus
%%Force
p = 10 ; % [N]
%%Matrix
F(1) = 0;
F(2) = p/m2;
Best wishes
Torsten.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!