Deriving the time-domain response of an equation, from a tf
78 次查看(过去 30 天)
显示 更早的评论
So I have the code to create a transfer function, from which you can get the graph of the step response:
G = tf([1], [1 0.9 5]);
step(G);
Easy. However I can't find a way to perform an inverse Laplace transform on G, to get an actual equation.
0 个评论
回答(1 个)
Benjamin Großmann
2018-4-24
编辑:Benjamin Großmann
2018-4-24
G = tf([1], [1 0.9 5]);
[num,den] = tfdata(G);
syms s
G_sym = poly2sym(cell2mat(num),s)/poly2sym(cell2mat(den),s)
You have to multiply the input in laplace domain to the transfer function to get the system response to a specific input in time domain:
Y_lap_sym = G_sym/s; % U(s) = 1/s for the unit step
y_time_sym = ilaplace(Y_lap_sym);
2 个评论
AAYUSH MARU
2020-4-3
clc;
clear all;
syms t;
t= 0:0.001:10
G = tf([1], [1 0.9 5]);
[num,den] = tfdata(G);
syms s
G_sym = poly2sym(cell2mat(num),s)/poly2sym(cell2mat(den),s)
Y_four_sym = G_sym/s; % U(s) = 1/s for the unit step
y_time_sym = ifourier(Y_four_sym);
y_n = double(y_time_sym);
subplot(2,1,1)
plot(t,y_time_sym);
how to plot step response here?
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!