To visualize the model log(y)=3log(x)\log(y) = \frac{3}{\log(x)}log(y)=log(x)3 alongside your data in a log(y)\log(y)log(y) vs log(x)\log(x)log(x) plot, you can utilize the MATLAB code below. This will overlay your actual data points and the theoretical model for comparison. Please ensure that all values the arrays “x” and “y” are positive before applying the logarithm.
% Replace with your actual data
x = [...]; % Vector of x values
y = [...]; % Vector of y values
% Ensure positive values
assert(all(x > 0) && all(y > 0), 'x and y must be positive for log.');
% Compute logarithms
logx = log(x);
logy = log(y);
% Theoretical model: log(y) = 3 / log(x)
model_logy = 3 ./ logx;
% Plot actual vs model
figure;
plot(logx, logy, 'bo', 'DisplayName', 'Actual log(y)'); hold on;
plot(logx, model_logy, 'r-', 'LineWidth', 2, 'DisplayName', 'Model: log(y) = 3 / log(x)');
xlabel('log(x)');
ylabel('log(y)');
title('log(y) vs log(x) with model overlay');
legend;
grid on;
I hope this is beneficial!