y = sqrt(100-x^2-z^2) or y = -sqrt(100-x^2-z^2)
->
I = integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x+sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx +
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x-sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx =
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} 2*(x+z)*10/sqrt(100-x^2-z^2) dz dx
In MATLAB:
I = integral2(@(x,z)2*(x+z)*10./sqrt(100-x.^2-z.^2),0,10,0,@(x)sqrt(100-x.^2))
Best wishes
Torsten.

