Trying to do simple Monte Carlo simulation

18 次查看(过去 30 天)
Hey, so I'm trying to do some a simple monte carlo simulation for some tolerances.
Essentially, I have lengths and their tolerances:
5 +- .2 in
6 +- .3 in
7 +- .4 in
I am trying to do a normal distribution of these 3. So my current code is:
n = 100000
x1 = ( randn(n,1) * 3 ) + 5;
x2 = ( randn(n,1) * 3 ) + 6;
x3 = ( randn(n,1) * 3 ) + 7;
y = sqrt(x1.^2+x2.^2+x3.^2)
y_mean = mean(y)
y_std = std(y)
y_median = median(y)
My issue is that how do I take into account the tolerances into the x1, x2, x3 functions? There is a place for the standard deviation, which is 3, and a place for the mean, but I am unsure how to put in the tolerances / do an analysis of the tolerances.
Any help would be greatly appreciated. Thank you.
  12 个评论
Pranav Akshay
Pranav Akshay 2023-4-27
actually iam doing project on tolerance analysis between the shafts in a gear box. So can i have the whole code
Walter Roberson
Walter Roberson 2023-4-27
What are you asking to have the whole code for?

请先登录,再进行评论。

采纳的回答

James Tursa
James Tursa 2018-6-8
编辑:James Tursa 2018-6-8
Based on the wording of the assignment:
To generate a normal distributed sample from the "5 +- .2 in":
r = randn*(0.2/3) + 5;
That is, 0.2 is 3 sd, so you use 0.2/3 as the sd of the sample, and then you add the mean of 5.
The uniform one you already know,
r = rand*(0.2*2) + (5 - 0.2);
Note that the target sample mean values (5 or 6 or 7) really don't play a part in your final answer, since you will be subtracting these values out of the sample vectors before you take the sqrt(etc) of the tolerance error results.

更多回答(1 个)

Walter Roberson
Walter Roberson 2018-6-8
If the point is that you need to generate values that are within that range, then switch to using the facilities of the Statistics toolbox, and see https://www.mathworks.com/help/stats/prob.normaldistribution.truncate.html
However, my take would be that you should instead be generating the values the way you are, and then testing, for example,
mask1 = x1 >= 5-0.2 & x1 <= 5+0.2;
If you wanted to know the fraction, then that would be mean(mask1)
  3 个评论
Image Analyst
Image Analyst 2018-6-8
You generate the values with randn() like you did. Masking just allows you to count the number of values that are in the range, like values in the range 5 +/- 0.2. You can use sum() to get the absolute count, or use mean() to get the fraction (=count/ total # of elements).

请先登录,再进行评论。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by