Bayesian Optimization <undefined> and NaN Results

8 次查看(过去 30 天)
Sorry, if it's a silly question. I am using Bayesian Optimization to optimize classifier hyperparameters but sometimes I having "<undefined>" and "NaN" values for some parameters. What do they mean? Dataset is not suitable for this classifier? Should I use classifier's default parameters? Thanks for the help.

采纳的回答

Don Mathis
Don Mathis 2018-6-26
编辑:Don Mathis 2018-6-26
I would need to see your example to be sure, but a typical case is when some parameter is not used when some other parameter has a certain value. For example, the PolynomialOrder parameter of an SVM is only used when the KernelFunction parameter is 'polynomial'. So a NaN or "<undefined>" value in a parameter vector means that you should not use that parameter.
  1 个评论
MByk
MByk 2018-6-26
编辑:MByk 2018-6-27
Thank you very much.
X = DataSet(:,(1:end-1));
Y = DataSet(:,end);
Disp_Opts = struct('Optimizer','bayesopt','ShowPlots',false,...
'Verbose',1,'AcquisitionFunctionName','expected-improvement-plus');
Mdl_Eva = fitcnb(X,Y,'OptimizeHyperparameters','all',...
'HyperparameterOptimizationOptions',Disp_Opts);

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Model Building and Assessment 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by