Change the axis limits of a SVM plot
4 次查看(过去 30 天)
显示 更早的评论
I trained a SVM classifier using "fitcsvm" and I got the graph shown below when the data was plotted. I want to make it more readable by reducing the range of axis. How to do it? The code I used is given below and the used datasets are attached.
close all; clear all;
load ImageDataSet.csv load ImageDataSetLabels.csv load PhotoshopPredict.csv
%grp_idx = grp2idx(FeatureLabels);
X = ImageDataSet(1:1763,:); y = ImageDataSetLabels(1:1763,:); X_new_data = PhotoshopPredict(1:end,:);
%dividing the dataset into training and testing rand_num = randperm(1763);
%training Set X_train = X(rand_num(1:1410),:); y_train = y(rand_num(1:1410),:);
%testing Set X_test = X(rand_num(1411:end),:); y_test = y(rand_num(1411:end),:);
%preparing validation set out of training set
c = cvpartition(y_train,'k',5);
SVMModel = fitcsvm(X_train,y_train,'Standardize',true,'KernelFunction','RBF',... 'KernelScale','auto','OutlierFraction',0.05);
CVSVMModel = crossval(SVMModel); classLoss = kfoldLoss(CVSVMModel) classOrder = SVMModel.ClassNames
sv = SVMModel.SupportVectors;
figure gscatter(X_train(:,1),X_train(:,2),y_train) hold on plot(sv(:,1),sv(:,2),'ko','MarkerSize',10) legend('Resampled','Non','Support Vector') hold off
X_test_w_best_feature =X_test(:,:); [c,score] = predict(SVMModel,X_new_data);
saveCompactModel(SVMModel,'SVM1000Images');
0 个评论
采纳的回答
Jonathon Gibson
2018-6-27
编辑:Jonathon Gibson
2018-6-27
To change the axis limits, you can add axis([xmin xmax ymin ymax]) to the end of your script. This will make some of the higher points not visible, but gives you a better sense of the data:
axis([0 200 0 5000]);
Because the data is so spread out, it might help to instead use a logarithmic scale on your axes:
axis tight;
set(gca,'yscale','log');
set(gca,'xscale','log');
4 个评论
Jonathon Gibson
2018-6-28
编辑:Jonathon Gibson
2018-6-28
I believe that your sv was smaller than expected and you are getting the wrong predictions because you train on standardized data, but then try to test and plot the raw unstandardized data. Change to this to see the difference:
SVMModel = fitcsvm(X_train,y_train,'Standardize',false,'KernelFunction','RBF',...
'KernelScale','auto','OutlierFraction',0.05);
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!