How can I do crossvalidation and oversampling with an imbalanced dataset?

3 次查看(过去 30 天)
I have an imbalanced dataset, with very few observations belonging to category 1 and a lot belonging to category 0. Therefore I want to oversample the smaller class 1. However, then I have to be careful when doing the crossvalidation that the same observation in category 1 is not included in both sets. Does anybody know how to code up the crossvalidation?
X_train = [1 2 3 2 4 5];
y_train = [0 0 0 0 1 1];
X_test = [2 4 1];
y_test = [0 1 0];
What I would do now is to oversample the observations with category 1:
X_train = [1 2 3 2 4 5 4 5];
y_train = [0 0 0 0 1 1 1 1];
Could anybody please help me with the crossvalidation when oversampling?

采纳的回答

Kenta
Kenta 2020-7-11

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by