Going from Euler's method to trapezoidal rule

10 次查看(过去 30 天)
I used Euler's Method to solve y'= 1−t+4y with y(0) = 1 on the interval [0, 2], h = 0.01. I posted my code below. How would I edit this code to solve the same problem using the Trapezoidal Rule?
if true
syms t y
f=@(t,y) 1-t+4.*y;
t=0;
y=1;
h=.01;
n=(2-0)/h;
for i=1:n
m=f(t(i),(y(i)));
y=[y, y(i)+m*h]; %y(i+1)=y(i)+m*h
t=[t, t(i)+h]; %t(i+1)=t(i)+h
end
for i=1:length(t)
fprintf('%5.4f | %5.4f\n',t(i),y(i))
end
end

回答(1 个)

Swaraj
Swaraj 2023-2-9
You would have to modify the calculation of the intermediate value m as follows:
if true
syms t y
f=@(t,y) 1-t+4.*y;
t=0;
y=1;
h=.01;
n=(2-0)/h;
%Changed Part Start
for i=1:n
m1 = f(t(i),y(i));
m2 = f(t(i) + h/2, y(i) + m1*h/2);
y = [y, y(i) + m2*h];
t = [t, t(i) + h];
end
%Changed Part End
for i=1:length(t)
fprintf('%5.4f | %5.4f\n',t(i),y(i))
end
end

类别

Help CenterFile Exchange 中查找有关 Programming 的更多信息

产品


版本

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by