Can I use parallel computing when training a gaussian process with separate length scales for predictors with fitgrp?
8 次查看(过去 30 天)
显示 更早的评论
My code for training the GP looks like this:
gpMdlspeed1 = fitrgp(model1,Speed1,'Basis','constant','FitMethod','exact',... 'PredictMethod','exact','KernelFunction','ardsquaredexponential','KernelParameters',[sigmaM01;sigmaF01],... 'Sigma',sigma01,'Standardize',1,'HyperparameterOptimizationOptions',struct('UseParallel',true), 'Verbose',2 );
But this is not using the parallelpool since my understanding is that hyperparameteroptimizationoptions applies only for bayesianopt optimizer. Is there a way to train this Gaussian process with separate length scales for predictors using parallel computing?
0 个评论
采纳的回答
Gautam Pendse
2018-9-25
Hi Lauri,
Even when there are separate length scales for predictors, these are jointly optimized during training. This optimization proceeds serially by moving from one set of values of the length scales to another set of values such that the log likelihood increases.
To speed up the optimization, you can consider loosening the convergence criterion as in this example:
Hope this helps,
Gautam
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!