Plot of the function after integration
1 次查看(过去 30 天)
显示 更早的评论
Hello. I want to plot a complicated function. Unfortunately at the end I obtain just one point of the function and the empty graph. I'd like to avoid exploitation of the command for to speed up my calculations. Could you explain where is my mistake? Thank you. Below is my code
function z=test_plot
tic
tt=-0.000689609;t=0.242731; muu=0.365908;
[m,NN]=meshgrid(0:100,-3000:1:3000);
y1= @(N,q,k) t*q./k.*log((-k.^2+2*k.*q-q.^2+muu+1i*(2*pi*N.*t-(2*m(1,:)+1)*pi*t))./(-k.^2-2*k.*q-...
q.^2+muu+1i*(2*pi*N.*t-(2*m(1,:)+1)*pi*t)))./(tt*pi+integral(@(a)a.*tanh((a.^2-muu)./(2*t)).*log((2*a.^2+2*a.*q+...
q.^2-2*muu-1i*2*pi*N*t)./(2*a.^2-2*a.*q+q.^2-2*muu-1i*2*pi*N*t))./q-2,0,10000,'AbsTol',1e-6,'RelTol',1e-3,'ArrayValued',true));
R1=@(q,k) integral(@(N)y1(N,q,k),3000,10^6,'AbsTol',1e-6,'RelTol',1e-3,'ArrayValued',true);
R11=@(q,k) integral(@(N)y1(N,q,k),-10^6,-3000,'AbsTol',1e-6,'RelTol',1e-3,'ArrayValued',true);
y2=@(q,k) t*q./k.*log((-k.^2+2*k.*q-q.^2+muu+1i*(2*pi*NN(:,1).*t-(2*m(1,:)+1)*pi*t))./(-k.^2-2*k.*q-...
q.^2+muu+1i*(2*pi*NN(:,1).*t-(2*m(1,:)+1)*pi*t)))./(tt*pi+integral(@(a)a.*tanh((a.^2-muu)./(2*t)).*log((2*a.^2+2*a.*q+...
q.^2-2*muu-1i*2*pi*NN(:,1).*t)./(2*a.^2-2*a.*q+q.^2-2*muu-1i*2*pi*NN(:,1).*t))./q-2,0,10000,'AbsTol',1e-6,'RelTol',1e-3,'ArrayValued',true));
R2=@(q,k) sum(y2(q,k));
S=@(q,k) R1(q,k)+R11(q,k)+R2(q,k)-4*sqrt(2)/pi*(1/1000)/(pi^(3/2)*sqrt(t))*q.^2;
Sigma=@(k) integral(@(q)S(q,k),0.001,7,'AbsTol',1e-6,'RelTol',1e-3,'ArrayValued',true);
Sum_sigma=@(k) 2*real(sum(Sigma(k)./((1i*(2*m(1,:)+1)*pi*t-k.^2+muu-Sigma(k)).*(1i*(2*m(1,:)+1)*pi*t-k.^2+muu))));
k=0.001:0.05:5.01;
Sum_sigma(k)
plot(k,Sum_sigma(k))
toc
end
12 个评论
Torsten
2018-10-15
I have no experience with parallel computing in MATLAB. But since the calculations for different k-values are independent, it should somehow be possible to parallelize here.
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Whos 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!