solving 4 nonlinear equations with 4 variables

14 次查看(过去 30 天)
Hi there,
I am attempting to solve 4 nonlinear equations with 4 variables
I have x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,v,t1,t2,t3,t4
(x0-x1)^2+(y0-y1)^2+(z0-z1)^2-(v*T0)^2-2*(v*T0*v*t1)-(v*t1)^2=0
(x0-x2)^2+(y0-y2)^2+(z0-z2)^2-(v*T0)^2-2*(v*T0*v*t2)-(v*t2)^2=0
(x0-x3)^2+(y0-y3)^2+(z0-z3)^2-(v*T0)^2-2*(v*T0*v*t3)-(v*t3)^2=0
(x0-x4)^2+(y0-y3)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2=0
I need to get x0,y0,z0, and T0.
could you please help me in clarifying the appropriate method.
thanks.
  1 个评论
Stephan
Stephan 2018-10-14
Is y3 correct in equation 4?:
(x0-x4)^2+(y0-y3)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2=0
I suspect it should be y4.

请先登录,再进行评论。

回答(1 个)

Stephan
Stephan 2018-10-14
编辑:Stephan 2018-10-14
Hi,
have a look at fsolve to solve this numerically.
Here is an example for your case with some fantasy values:
solve_nonlinear_system
function solve_nonlinear_system
% Insert your known values here - fantasy values for showing how to use fsolve:
x1 = 12;
y1 = 15;
z1 = 10;
x2 = 20;
y2 = 25;
z2 = 22;
x3 = 38;
y3 = 41;
z3 = 37;
x4 = 62;
y4 = 62;
z4 = 58;
v = 15;
t1 = 10;
t2 = 40;
t3 = 65;
t4 = 10;
% Initial solution for fsolve:
x_init = [1 1 1 1];
% call fsolve:
sol = fsolve(@system_equations,x_init);
% show results:
fprintf('x0 = %.5f,\ny0 = %.5f,\nz0 = %.5f and\nT0 = %.5f\n', sol(1),sol(2),sol(3),sol(4))
% Your objective function:
function F = system_equations(x)
x0 = x(1);
y0 = x(2);
z0 = x(3);
T0 = x(4);
F = [(x0-x1)^2+(y0-y1)^2+(z0-z1)^2-(v*T0)^2-2*(v*T0*v*t1)-(v*t1)^2,...
(x0-x2)^2+(y0-y2)^2+(z0-z2)^2-(v*T0)^2-2*(v*T0*v*t2)-(v*t2)^2,...
(x0-x3)^2+(y0-y3)^2+(z0-z3)^2-(v*T0)^2-2*(v*T0*v*t3)-(v*t3)^2,...
(x0-x4)^2+(y0-y4)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2];
end
end
If you replace the values by yours it should work properly.
NOTE: I guess there is a typo i your 4th equation - i would expect it should be y4 not y3 in:
(x0-x4)^2+(y0-y3)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2=0
Best regards
Stephan

类别

Help CenterFile Exchange 中查找有关 Systems of Nonlinear Equations 的更多信息

标签

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by