Is there any code or command for doubling a point ?
10 次查看(过去 30 天)
显示 更早的评论
I have an elliptic curve y*2=x*3+148x+225 mod 5003 I took G=(1355,2421) as the shared key I want to find points as (G,2G,3G,4G,......5003G)
采纳的回答
Bruno Luong
2018-10-24
% EL parameters
a = 148
b = 225
% Group Z/pZ parameter
p = 5003
% Point
G = [1355,2421];
% Compute G2 = 2*G
x = G(1);
y = G(2);
d = mod(2*y,p);
[~,invd,~] = gcd(d,p);
n = mod(3*x*x + a,p);
lambda = mod(n*invd,p);
x2 = mod(lambda*lambda - 2*x,p);
y2 = mod(lambda*(x-x2)-y,p);
G2 = [x2 y2]
G2 =
533 2804
6 个评论
更多回答(4 个)
Bruno Luong
2018-10-26
EL = struct('a', 148, 'b', 225, 'p', 5003);
% Point
G = [1355,2421];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
invd = itab(mod(d,p)); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
yr = lambda*(xp-xr) - yp;
R = mod([xr, yr],p);
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
11 个评论
Bruno Luong
2022-2-21
As stated in my code, for illustration only, there is no careful check for overflow of calculation. This code is more robust but still not bulet-proof
EL = struct('a', 0, 'b', 2, 'p', 957221);
% Point
G = [762404,61090];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
d = mod(d,p);
n = mod(n,p);
invd = itab(d); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
xr = mod(xr,p);
yr = lambda*(xp-xr) - yp;
yr = mod(yr,p);
R = [xr, yr];
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
KSSV
2018-10-23
G=[1355,2421] ;
P = 1:1:5003 ;
Q = P'.*G ;
8 个评论
Walter Roberson
2018-10-24
Should the definition of s really divide by 2 and multiply the results by y, or should it be dividing by (2*y)?
Bruno Luong
2018-10-23
I reiterate my answer previously, you need first to program the "+" operator for EL, then doubling point 2*Q is simply Q "+" Q.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Special Values 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!