How to use integral2 when the integrand is a array?
2 次查看(过去 30 天)
显示 更早的评论
(x,y) is a generated integrand as the following codes. d is a parameter in Tuu. I want to get a set of value of the integration "integral2(@Tuu,0,pi/2,0,pi/4)" with different values of d. And thus I set d=1e-9:1e-10:3e-9 as in the codes. However the codes "integral2(@Tuu,0,pi/2,0,pi/4)" gives the error "insufficient number of inputs". Why? How to solve this problem? Many thanks!
The codes of Tuu(x,y) are as following:
function U=Tuu(x,y)
d=1e-9:1e-10:3e-9;
mu=8;
delta=10;
vh=16;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.116e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
ku=kc.*sqrt(mu+delta);
kd=kc.*sqrt(mu-delta);
puu1=sqrt(ku.^2-ku.^2.*sin(x).^2+kc.^2.*vh);
puu2=sqrt(ku.^2-ku.^2.*sin(x).^2-kc.^2.*vh);
quu1=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
quu2=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2-kc.^2.*vh);
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
end
1 个评论
Walter Roberson
2018-11-2
>> integral2(@Tuu,0,pi/2,0,pi/4)
Matrix dimensions must agree.
Error in Tuu (line 17)
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
采纳的回答
Walter Roberson
2018-11-2
d=1e-9:1e-10:3e-9;
output = arrayfun(@(D) integral2(@(x,y) Tuu(x, y, D), 0,pi/2,0,pi/4,'reltol', 2e-4), d);
function U=Tuu(x, y, d)
mu=8;
delta=10;
vh=16;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.116e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
ku=kc.*sqrt(mu+delta);
kd=kc.*sqrt(mu-delta);
puu1=sqrt(ku.^2-ku.^2.*sin(x).^2+kc.^2.*vh);
puu2=sqrt(ku.^2-ku.^2.*sin(x).^2-kc.^2.*vh);
quu1=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
quu2=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2-kc.^2.*vh);
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
end
If you try to use a smaller relative tolerance then you will get warning messages about using too many iterations. Your integrals are in the range of 2E20 so they do not converge well.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Logical 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!