How do I find common volume of spheres?

3 次查看(过去 30 天)
I have plotted some spheres using surf and want to find where they all meet. i.e. co-ordinates that are inside all of the spheres.
the code I used to generate the spheres is:
r=15;
phi=linspace(0,pi,30);
theta=linspace(0,2*pi,40);
[phi,theta]=meshgrid(phi,theta);
x=r*sin(phi).*cos(theta);
y=r*sin(phi).*sin(theta);
z=r*cos(phi);
clf
hold on
inx=3363.5;
iny=1195.5;
inz=21.5;
h=surf(x+inx, y+iny, z+inz); % generates first sphere
inx=3363.5;
iny=1169.5;
inz=32.5;
b=surf(x+inx, y+iny, z+inz); %generates second sphere
inx=3346.5;
iny=1177.5;
inz=33.5;
c=surf(x+inx, y+iny, z+inz);
inx=3366.5;
iny=1182.5;
inz=12.5;
e=surf(x+inx, y+iny, z+inz);
inx=3357.5;
iny=1182.5;
inz=12.5;
f=surf(x+inx, y+iny, z+inz);
shading faceted
set(h,'FaceAlpha',0.5) %makes them transparent
set(b,'FaceAlpha',0.5)
set(c,'FaceAlpha',0.5)
set(e,'FaceAlpha',0.5)
set(f,'FaceAlpha',0.5)
I have tried simply comparing the spheres but I am finding it difficlut to see where they meet since there is soo many.
How can I make them easier to compare?
P.S. I am using r2011a

回答(2 个)

Richard Brown
Richard Brown 2012-7-5
Here's how I'd do it (if I was in a hurry). First pretend all the spheres are cubes, and find their intersection.
inx = [3363.5, 3363.5, 3346.5, 3366.5, 3357.5];
iny = [1195.5, 1169.5, 1177.5, 1182.5, 1182.5];
inz = [21.5, 32.5, 33.5, 12.5, 12.5];
% Find bounding box for region
xlim = [max(inx - r), min(inx + r)];
ylim = [max(iny - r), min(iny + r)];
zlim = [max(inz - r), min(inz + r)];
Then, generate a large number ( ngrid^3 ) of points inside that box
ngrid = 100;
[X, Y, Z] = ndgrid(linspace(xlim(1), xlim(2), ngrid), ...
linspace(ylim(1), ylim(2), ngrid), ...
linspace(zlim(1), zlim(2), ngrid));
X = X(:); Y = Y(:); Z = Z(:);
Finally, rule them out by checking every point against every sphere. If you're lucky there should be some left.
% Now rule points out
idx = true(size(X)); % All points assumed in to start with
for i = 1:numel(inx)
idx = idx & (X - inx(i)).^2 + (Y - iny(i)).^2 + (Z - inz(i)).^2 <= r^2;
end
X = X(idx); Y = Y(idx); Z = Z(idx);
In your case, the intersection of all spheres is empty.

Cameron Henry
Cameron Henry 2012-7-5
thanks for the quick response!
so there is no common volume? :(
what I needed to find was the maximum number of spheres that you could be in at the same time and where the co-ordinates of that is. I thought that these ones were the maximum amount, but obvisuly not.
so how would I find the common volume that includes as many spheres as possible?
There is 9 spheres, the coordinates of the spheres are the 5 from before as well as 4 more
x=[3358.5,3364.5,3353.5,3361.5]
y=[1168.5,1201.5,1190.5,1179.5]
z=[8.5,12.5,17.5,23.5]
I excluded these before because, the first two are further away so I think they won't work, and the other 2 are in close so I think that they will always be part of the common volume
  1 个评论
Richard Brown
Richard Brown 2012-7-8
If you have only 9 spheres, then there are only 81 possible ways of choosing between 1 and 9 different spheres. I suggest you use my approach above on each of these combinations, and see what the largest number of spheres you can find that has a nonempty intersection is.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Surface and Mesh Plots 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by