allocate values avoiding loop
13 次查看(过去 30 天)
显示 更早的评论
I have the following matrix [t k p]
1.0000 1.0000 -1.1471
1.0000 2.0000 -1.0689
2.0000 1.0000 -0.8095
2.0000 2.0000 -2.9443
3.0000 1.0000 1.4384
3.0000 2.0000 0.3252
and I want an additional column with the mean of p for every t, hence
1.0000 1.0000 -1.1471 -1.1080
1.0000 2.0000 -1.0689 -1.1080
2.0000 1.0000 -0.8095 -1.8769
2.0000 2.0000 -2.9443 -1.8769
3.0000 1.0000 1.4384 0.8818
3.0000 2.0000 0.3252 0.8818
I can do it with the following code
if true
%Calulate the mean
A=[t p_tk];
p_t= accumarray(A(:,[1]), A(:,2), [], @nanmean, NaN);
% allocate it to long form
p_t_long= NaN(size(t));
for d = 1:max(t)
ind= t ==d;
p_t_long(ind)= p_t(d);
end
end
However, I want to avoid loops since I have a big dataset. Can anybody help?
0 个评论
采纳的回答
Stephen23
2018-11-8
编辑:Stephen23
2018-11-8
Some indexing using the first column does what you want, more efficiently than a loop or unique:
>> M = [1,1,-1.1471;1,2,-1.0689;2,1,-0.8095;2,2,-2.9443;3,1,1.4384;3,2,0.3252]
M =
1.00000 1.00000 -1.14710
1.00000 2.00000 -1.06890
2.00000 1.00000 -0.80950
2.00000 2.00000 -2.94430
3.00000 1.00000 1.43840
3.00000 2.00000 0.32520
>> V = accumarray(M(:,1),M(:,3),[],@mean)
V =
-1.10800
-1.87690
0.88180
>> M(:,4) = V(M(:,1))
M =
1.00000 1.00000 -1.14710 -1.10800
1.00000 2.00000 -1.06890 -1.10800
2.00000 1.00000 -0.80950 -1.87690
2.00000 2.00000 -2.94430 -1.87690
3.00000 1.00000 1.43840 0.88180
3.00000 2.00000 0.32520 0.88180
3 个评论
Stephen23
2018-11-12
编辑:Stephen23
2018-11-12
>> M = [1,1,1,0.1435;1,1,2,-5.3137;1,2,1,-6.7921;1,2,2,-8.5640;2,1,1,-2.3356;2,1,2,-17.0264;2,2,1,12.6423;2,2,2,8.2006;3,1,1,2.7997;3,1,2,2.6523;3,2,1,-4.9816;3,2,2,13.1869]
M =
1.00000 1.00000 1.00000 0.14350
1.00000 1.00000 2.00000 -5.31370
1.00000 2.00000 1.00000 -6.79210
1.00000 2.00000 2.00000 -8.56400
2.00000 1.00000 1.00000 -2.33560
2.00000 1.00000 2.00000 -17.02640
2.00000 2.00000 1.00000 12.64230
2.00000 2.00000 2.00000 8.20060
3.00000 1.00000 1.00000 2.79970
3.00000 1.00000 2.00000 2.65230
3.00000 2.00000 1.00000 -4.98160
3.00000 2.00000 2.00000 13.18690
>> [~,~,idx] = unique(M(:,1:end-2),'rows'); % indices of row groups.
>> V = accumarray(idx,M(:,end),[],@mean); % mean of each group.
>> M(:,5) = V(idx)
M =
1.00000 1.00000 1.00000 0.14350 -2.58510
1.00000 1.00000 2.00000 -5.31370 -2.58510
1.00000 2.00000 1.00000 -6.79210 -7.67805
1.00000 2.00000 2.00000 -8.56400 -7.67805
2.00000 1.00000 1.00000 -2.33560 -9.68100
2.00000 1.00000 2.00000 -17.02640 -9.68100
2.00000 2.00000 1.00000 12.64230 10.42145
2.00000 2.00000 2.00000 8.20060 10.42145
3.00000 1.00000 1.00000 2.79970 2.72600
3.00000 1.00000 2.00000 2.65230 2.72600
3.00000 2.00000 1.00000 -4.98160 4.10265
3.00000 2.00000 2.00000 13.18690 4.10265
更多回答(2 个)
Bruno Luong
2018-11-8
A=[...
1.0000 1.0000 -1.1471
1.0000 2.0000 -1.0689
2.0000 1.0000 -0.8095
2.0000 2.0000 -2.9443
3.0000 1.0000 1.4384
3.0000 2.0000 0.3252 ]
[~,~,J] = unique(A(:,1));
p_t= accumarray(J, A(:,3), [], @(x) mean(x,'omitnan'), NaN);
[A p_t(J)]
Result
ans =
1.0000 1.0000 -1.1471 -1.1080
1.0000 2.0000 -1.0689 -1.1080
2.0000 1.0000 -0.8095 -1.8769
2.0000 2.0000 -2.9443 -1.8769
3.0000 1.0000 1.4384 0.8818
3.0000 2.0000 0.3252 0.8818
5 个评论
Bruno Luong
2018-11-12
My problem was that I didn't know how to use unique() properly with 3 groups,
Stephen already answered by just add 'ROWS' argument, to have one identification (third output) by for each 1x3 row (your "groups").
BTW, you might not noticed by using
accumarray(...,data) ./ accumarray(...,1)
is always fater than
accumarray(...,data, ..., @mean)
if speed is matter for you.
Cris LaPierre
2018-11-8
grpAvg = splitapply(@mean,p,t);
pAvg = grpAvg(t);
[t k p pAvg]
2 个评论
Cris LaPierre
2018-11-8
编辑:Cris LaPierre
2018-11-8
If your grouping variable is not as clean as it is in this example, you can use the findgroups function to create an index of the unique values in your grouping variable.
Cris LaPierre
2018-11-12
Using your updated matrix from a comment, here is a robust way to achieve what you want using findgroups and splitapply (assuming variable t,k,l, and p exist and represent the columns of M):
M = [t k l p]
G = findgroups(t,k);
grpAvg = splitapply(@mean,p,G);
pAvg = grpAvg(G);
V = [t k l p pAvg]
The original matrix M is
M =
1.0000 1.0000 1.0000 0.1435
1.0000 1.0000 2.0000 -5.3137
1.0000 2.0000 1.0000 -6.7921
1.0000 2.0000 2.0000 -8.5640
2.0000 1.0000 1.0000 -2.3356
2.0000 1.0000 2.0000 -17.0264
2.0000 2.0000 1.0000 12.6423
2.0000 2.0000 2.0000 8.2006
3.0000 1.0000 1.0000 2.7997
3.0000 1.0000 2.0000 2.6523
3.0000 2.0000 1.0000 -4.9816
3.0000 2.0000 2.0000 13.1869
And resulting matrix V is
V =
1.0000 1.0000 1.0000 0.1435 -2.5851
1.0000 1.0000 2.0000 -5.3137 -2.5851
1.0000 2.0000 1.0000 -6.7921 -7.6780
1.0000 2.0000 2.0000 -8.5640 -7.6780
2.0000 1.0000 1.0000 -2.3356 -9.6810
2.0000 1.0000 2.0000 -17.0264 -9.6810
2.0000 2.0000 1.0000 12.6423 10.4215
2.0000 2.0000 2.0000 8.2006 10.4215
3.0000 1.0000 1.0000 2.7997 2.7260
3.0000 1.0000 2.0000 2.6523 2.7260
3.0000 2.0000 1.0000 -4.9816 4.1026
3.0000 2.0000 2.0000 13.1869 4.1026
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Loops and Conditional Statements 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!