Is it normal that one neuron in the hidden layer is sufficient for a neural network with 56 inputs and one output?
1 次查看(过去 30 天)
显示 更早的评论
I am training a neural network with the following specifications:
Number of inputs: 56
Number of outputs: 1
Number of samples in training data: 2000
Training function: trainbr
Training goal: 1e4
As I see, when I start with one neuron in the hidden layer, the neural network works well even for the data which was not used for training. When I start increasing the number of neurons to 5, 10, etc.. and also number of hidden layers like [5 5], [5 5 5] and so on. The result does not improve. Infact, the neural network tries to overfit if I do not restrict my goal to 1e4. By overfitting, I mean that the training curve and the testing curve starting moving apart from each other around mse of 1e4. I have read a lot online where some sources say, that having just one neuron in the hidden layer might be dangerous when the network is implemented as a generalized model. Does it mean that the network may not function well when exposed to more and more data? Any inputs on this will be appreciated. Thanks.
0 个评论
采纳的回答
Greg Heath
2018-11-17
If your training data is sufficient, the most stable designs occur when the training goal is satisfied wit h a minimum number of hidden nodes.
Hope this helps
Thank you for formally accepting my answer
Greg
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!