Difference fitrkernel and fitrsvm

3 次查看(过去 30 天)
Dimitri
Dimitri 2018-11-20
编辑: antlhem 2021-5-29
Hello,
I'm looking at the different fitr-models and I'm wondering where the difference is between the default fitrkernel and fitrsvm with gaussian kernel. Both have the same hyperparameters. Fitrkernel is a gaussian kernel model, that uses an svm as a linear regression model and fitrsvm is an svm with a gauss kernel. Isn't that redundant?
Furthermore I do not understand the exact function of the hyperparameter "KernelScale" in both models. Are there any papers explaining the parameter used in Matlab?
Best regards,
Dimitri

回答(1 个)

Don Mathis
Don Mathis 2018-11-30
The basic difference is that fitrsvm fits an exact SVM model, in the sense that it uses the exact kernel function and solves the "dual" problem. fitrkernel solves the "primal" problem using an explicit finite-sized feature space, which results in an approximation of the kernel function. For large datasets, the kernel approximation can be much faster and give good enough results.
According to this Doc page,
"The software divides all elements of the predictor matrix X by the value of KernelScale. Then, the software applies the appropriate kernel norm to compute the Gram matrix."
  1 个评论
antlhem
antlhem 2021-5-29
编辑:antlhem 2021-5-29
Could take a look into my question? https://uk.mathworks.com/matlabcentral/answers/842800-why-matlab-svr-is-not-working-for-exponential-data-and-works-well-with-data-that-fluctuates?s_tid=prof_contriblnk

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Support Vector Machine Regression 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by