Nvidia NVLink in MATALB using multiple Geforce 2080 ti cards
11 次查看(过去 30 天)
显示 更早的评论
The NVLink yields a high bidirectional bandwidth between the cards (the Geforce 2080 ti offers 100 GB/, while the GeForce RTX 2080 offers 50GB/s). When fully utilized, the NVLink will minimize inter-GPU traffic over the PCI Express interface and also allows the memory on each card to behave more as a single, shared resource. This opens up the possibility for new multi-GPU modes for scientific analysis and big dataworkloads as well.
Will Matlab take advantage of the nvlinks ability to share resources between cards in future releases (R2019a/R2019b)?
1 个评论
Walter Roberson
2018-12-17
Questions about future products need to be asked of your Sales Representative. The people who volunteer to answer questions here are either outside volunteers or inside volunteers who are seldom authorized to speak about future products without a Non-Disclosure Agreement.
采纳的回答
Prem Ankur
2018-12-20
编辑:Prem Ankur
2018-12-20
I understand that you want to use Nvidia NVLink with MATLAB to leverage multiple Nvidia Geforce 2080 ti graphic cards.
Currently, there is no straightforward way to utilize the high bidirectional bandwidth to distribute the computations across the available GPUs. This would be possible with the introduction of distributed GPU arrays which can use all GPUs and gather the results back automatically. Distributed GPU arrays are currently not supported in MATLAB.
Our development teams are aware of this and are currently considering "distributed GPU Arrays" for future releases of MATLAB.
Currently, there are no commands to enable NVLink in MDCS. As a workaround to leverage NVlink, you can use "gop" function as in example given below that does the computation in each gpu and get the result back :
>> gop(@plus, gpuArray(X), 'gpuArray');
Open a parpool and issue local and/or communicating instructions via spmd that will allow to do distributed computation between the GPUs.
Refer to the following link for using gop with spmd to distribute the operations to each GPU and in turn effectively use all the GPU memory for the same function using chunks of data:
10 个评论
Walter Roberson
2021-6-4
Everything that I know on this topic, that I have not posted in the past, is under Non-Disclosure Agreement.
You need to contact Mathworks Sales and see if they are willing to give you the relevant information under Non-Disclosure Agreement.
Joss and most other Mathworks employees are not permitted to discuss the matter until 10 days before any hypothetical official release... and Mathworks is not even running any Beta at the moment, so any hypothetical official release is not going to be any time "soon".
Joss Knight
2021-6-5
MATLAB's basic point-to-point comms via labSend and labReceive, as well as gop and labBroadcast now all use NVLink or NVSwitch (or other peer-to-peer comms) where available on both platforms.
MATLAB still does not have support for distributed gpuArrays. The most useful distributed array functionality is dependent on ScaLAPACK, for which there is no GPU library equivalent. That said, more multi-GPU features are planned for future releases.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Parallel and Cloud 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!