Forward Euler solution plotting

32 次查看(过去 30 天)
Michael Swanson
Michael Swanson 2019-1-12
编辑: Torsten 2019-1-14
Hi,
I am trying to solve the differential equation dx/dy=x-y from x=0 to 1.5 using the forward euler method with step sizes 0.25, 0.05, and 0.01. I want to plot the approximations of all three step sizes on one plot, with the exact solution y=(x+1)-(1/3)e^x as well. I have the first approximation and plot with step size 0.25 in the code below. I was thinking I would use an array of step sizes where h=[0.25 0.05 0.01] and N=[6 30 150] but it's not working. How should I go about this?
h=0.25; % step size
N=6; % number of steps
y(1)=2/3; % Initial condition
for n=1:N
x(n+1)=n*h
y(n+1)= y(n)+h*(y(n)-x(n)) % FWD Euler solved for y(n+1)
end
plot(x,y)

回答(1 个)

Torsten
Torsten 2019-1-14
编辑:Torsten 2019-1-14
function main
x0 = 0.0;
x1 = 1.5;
fun = @(x,y) y-x;
h = [0.25 0.05 0.01];
for i = 1:numel(h)
[x{i},y{i}] = euler(fun,x0,x1,h(i));
end
plot(x{1},y{1},x{2},y{2},x{3},y{3})
end
function [x,y] = euler(fun,x0,x1,h)
x(1) = x0;
y(1) = 2.0/3.0;
N = (x1-x0)/h;
for i=2:N+1
y(i) = y(i-1) + h*fun(x(i-1),y(i-1));
x(i) = x(i-1) + h;
end
end

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by