Validation Accuracy on Neural network
29 次查看(过去 30 天)
显示 更早的评论
Hello..I wonder if any of you who have used deep learning on matlab can help me to troubleshoot my problem. I don't understand why I got a sudden drop of my validation accuracy at the end of the graph? It's a simple network with one convolution layer to classify cases with low or high risk of having breast cancer. After the final iteration it displays a validation accuracy of above 80% but then suddenly it dropped to 73% without an iteration. I don't understand that.
Here's my code
%set training dataset folder
digitDatasetPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run
2\dataBreast\training2');
%training set
imdsTrain = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%set validation dataset folder
validationPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run
2\dataBreast\validation2');
%testing set
imdsValidation = imageDatastore(validationPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%create a clipped ReLu layer
layer = clippedReluLayer(10,'Name','clip1');
% define network architecture
layers = [
imageInputLayer([256 256 1]);
% conv_1
convolution2dLayer(3,32,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
%fc
fullyConnectedLayer(100)
dropoutLayer(0.7,'Name','drop1');
%fc
fullyConnectedLayer(25)
dropoutLayer(0.8,'Name','drop2');
% fc layer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
% specify training option
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',15, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% train network using training data
net = trainNetwork(imdsTrain,layers,options);
% classify validation images and compute accuracy
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
%calculate accuracy
accuracy = sum(YPred == YValidation)/numel(YValidation);
8 个评论
回答(4 个)
Andrik Rampun
2019-2-19
18 个评论
Don Mathis
2019-2-26
Yes, MiniBatchSize. And I meant the outputSize of your fullyConnectedLayers could be reduced to something smaller than 3136:
fullyConnectedLayer(3136)
Saira
2020-6-15
Hi,
I have 5600 training images. I have extracted features using Principal Component Analysis (PCA). Then I am applying CNN on extracted features. My training accuracy is 30%. How to increase training accuracy?
Feature column vector size: 640*1
My training code:
% Convolutional neural network architecture
layers = [
imageInputLayer([1 640 1]);
reluLayer
fullyConnectedLayer(7);
softmaxLayer();
classificationLayer()];
options = trainingOptions('sgdm', 'Momentum',0.95, 'InitialLearnRate',0.0001, 'L2Regularization', 1e-4, 'MaxEpochs',5000, 'MiniBatchSize',8192, 'Verbose', true);
0 个评论
Sevda Kemba
2022-6-6
@Andrik Rampun Hello. In Matlab, we load the data set with code and limit it in deep learning. But when we train, validation accuracy stays between 40-50%. What can we do to increase it to 90%? We would be very happy if you could help.
0 个评论
Sevda Kemba
2022-6-6
@Saira Hello. In Matlab, we load the data set with code and limit it in deep learning. But when we train, validation accuracy stays between 40-50%. What can we do to increase it to 90%? We would be very happy if you could help.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!