Cumulative sum per ID

3 次查看(过去 30 天)
aggelos
aggelos 2019-2-25
Hello all,
I have a large dataset like these:
YTD=
ID Variable1 Variable2
'2019-01-07T06:53:32.000Z' 1738 0 1 100 -4.04000000000000 10000
'2019-01-07T07:00:06.000Z' 1738 0 1 100 1.58000000000000 10000
'2019-01-07T08:34:42.000Z' 1738 0 1 100 0.810000000000000 10000
'2019-01-07T09:02:30.000Z' 1738 1 1 100 0.910000000000000 10000
'2019-01-07T14:13:09.000Z' 1738 0 1 100 2.01000000000000 10000
'2019-01-07T14:27:46.000Z' 1738 0 1 100 0.670000000000000 10000
'2019-01-07T14:43:58.000Z' 1738 0 1 100 -4.10000000000000 10000
'2019-01-07T14:56:56.000Z' 1738 0 1 100 0.200000000000000 10000
'2019-01-07T15:02:59.000Z' 1738 0 1 100 0.440000000000000 10000
'2019-01-07T15:44:32.000Z' 1738 1 1 100 0.150000000000000 10000
'2019-01-07T16:12:53.000Z' 1738 0 1 100 1.11000000000000 10000
'2019-01-07T16:18:56.000Z' 1738 1 1 100 1.51000000000000 10000
'2019-01-07T16:28:29.000Z' 1738 0 1 100 0.430000000000000 10000
'2019-01-09T08:53:28.000Z' 1738 1 3 100 0 10000
'2019-01-09T08:53:28.000Z' 1738 0 3 100 -8.48000000000000 10000
'2019-01-09T08:53:34.000Z' 1738 0 3 100 -6.20000000000000 10000
'2019-01-09T08:53:34.000Z' 1738 1 3 100 0 10000
'2019-01-19T08:53:19.000Z' 1746 1 1 5000 -0.0500000000000000 10000
'2019-01-19T08:53:20.000Z' 1746 0 1 100 0 10000
'2019-01-19T08:59:38.000Z' 1746 1 1 100 -5.51000000000000 10000
'2019-01-19T08:59:40.000Z' 1746 1 1 100 -1.87000000000000 10000
'2019-01-19T08:59:40.000Z' 1746 1 1 100 -3.28000000000000 10000
'2019-01-19T08:59:42.000Z' 1746 1 1 100 -1.86000000000000 10000
'2019-01-19T08:59:43.000Z' 1746 1 1 100 -1.86000000000000 10000
'2019-01-19T08:59:44.000Z' 1746 1 1 100 -2.30000000000000 10000
'2019-01-19T09:04:34.000Z' 1746 0 1 100 -2.54000000000000 10000
'2019-01-19T09:04:42.000Z' 1746 0 1 100 -2.60000000000000 10000
'2019-01-19T09:04:42.000Z' 1746 0 1 100 -2.60000000000000 10000
'2019-01-19T09:04:44.000Z' 1746 0 1 100 -2.84000000000000 10000
'2019-01-19T09:04:48.000Z' 1746 0 1 100 -2.95000000000000 10000
'2019-01-19T09:04:50.000Z' 1746 0 1 100 -3.28000000000000 10000
'2019-01-19T09:06:22.000Z' 1746 0 1 100 -4.15000000000000 10000
'2019-01-02T07:22:30.000Z' 1759 1 1 100000 -63.5300000000000 10000
'2019-01-03T04:11:54.000Z' 1759 1 1 100000 -94.2100000000000 10000
'2019-01-03T08:33:10.000Z' 1759 1 1 100000 5.67000000000000 10000
'2019-01-03T08:34:30.000Z' 1759 1 1 10000 -0.100000000000000 10000
'2019-01-04T07:06:48.000Z' 1759 1 1 300000 192.030000000000 10000
'2019-01-04T08:40:09.000Z' 1759 1 1 10000 -339.750000000000 10000
'2019-01-04T20:09:31.000Z' 1759 1 1 300000 -207.870000000000 10000
'2019-01-05T00:24:21.000Z' 1759 1 1 300000 -12.2400000000000 10000
'2019-01-05T00:25:32.000Z' 1759 1 1 10000 -101.030000000000 10000
'2019-01-05T00:41:51.000Z' 1759 1 1 10000 -17.3300000000000 10000
'2019-01-05T01:11:36.000Z' 1759 1 1 100000 -112.020000000000 10000
'2019-01-05T01:54:24.000Z' 1759 1 1 100000 -11.3300000000000 10000
'2019-01-05T07:08:28.000Z' 1759 1 1 300000 -19.2300000000000 10000
'2019-01-08T08:23:48.000Z' 1759 1 1 50000 -0.840000000000000 10000
'2019-01-08T14:54:06.000Z' 1759 1 1 10000 101.490000000000 10000
'2019-01-09T00:11:14.000Z' 1759 1 1 50000 -49.2400000000000 10000
'2019-01-09T00:11:28.000Z' 1759 1 1 100000 -404.560000000000 10000
'2019-01-09T00:12:16.000Z' 1759 1 1 300000 477.570000000000 10000
'2019-01-09T01:18:49.000Z' 1759 1 1 300000 -30.2400000000000 10000
'2019-01-09T03:38:41.000Z' 1759 1 1 10000 -11.9200000000000 10000
'2019-01-09T05:42:41.000Z' 1759 1 1 10000 -11.6000000000000 10000
'2019-01-09T05:46:19.000Z' 1759 1 1 200000 16.7200000000000 10000
'2019-01-09T07:46:59.000Z' 1759 1 1 200000 -10.4400000000000 10000
'2019-01-09T10:14:06.000Z' 1759 1 1 10000 9.52000000000000 10000
'2019-01-09T10:24:57.000Z' 1759 1 1 10000 -10.9500000000000 10000
'2019-01-09T11:38:35.000Z' 1759 1 1 200000 -25.9000000000000 10000
'2019-01-09T19:21:41.000Z' 1759 1 1 300000 -22.3800000000000 10000
'2019-01-09T22:07:18.000Z' 1759 1 1 10000 -78.4300000000000 10000
'2019-01-09T22:10:56.000Z' 1759 1 1 200000 -18.4000000000000 10000
'2019-01-09T22:11:17.000Z' 1759 1 1 13000 -0.130000000000000 10000
'2019-01-10T00:32:31.000Z' 1759 1 1 300000 -51 10000
'2019-01-10T00:37:40.000Z' 1759 1 1 30000 -0.370000000000000 10000
'2019-01-10T00:54:55.000Z' 1759 1 1 10000 -21.4000000000000 10000
'2019-01-10T01:15:30.000Z' 1759 1 1 300000 -24.3900000000000 10000
'2019-01-10T02:27:35.000Z' 1759 1 1 300000 -25.2300000000000 10000
'2019-01-10T04:34:52.000Z' 1759 1 1 100000 -1.97000000000000 10000
'2019-01-11T03:04:42.000Z' 1759 1 1 300000 36.1800000000000 10000
'2019-01-11T03:08:23.000Z' 1759 1 1 100000 15.7800000000000 10000
'2019-01-11T03:13:07.000Z' 1759 1 1 300000 -22.2300000000000 10000
'2019-01-11T04:25:06.000Z' 1759 1 1 300000 -34.7100000000000 10000
'2019-01-11T04:36:10.000Z' 1759 1 1 200000 -8.08000000000000 10000
'2019-01-11T04:56:57.000Z' 1759 1 1 10000 48.7500000000000 10000
'2019-01-11T05:10:02.000Z' 1759 1 1 200000 -14.1000000000000 10000
'2019-01-11T05:56:06.000Z' 1759 1 1 10000 -11.4100000000000 10000
'2019-01-11T06:46:39.000Z' 1759 1 1 100 0.110000000000000 10000
'2019-01-11T06:59:17.000Z' 1759 1 1 10000 -12.9000000000000 10000
'2019-01-11T07:26:25.000Z' 1759 1 1 10000 -17.2100000000000 10000
'2019-01-11T08:00:41.000Z' 1759 1 1 10000 -4.63000000000000 10000
'2019-01-11T08:54:18.000Z' 1759 1 1 10000 -2.16000000000000 10000
'2019-01-11T11:04:10.000Z' 1759 1 1 10000 2.66000000000000 10000
'2019-01-11T11:04:46.000Z' 1759 1 1 100000 9.63000000000000 10000
'2019-01-11T13:46:32.000Z' 1759 1 1 100000 -10.3000000000000 10000
'2019-01-11T13:47:49.000Z' 1759 1 1 10000 1.36000000000000 10000
'2019-01-12T04:37:23.000Z' 1759 1 1 10000 342.730000000000 10000
'2019-01-12T07:32:27.000Z' 1759 1 1 10000 65.1300000000000 10000
'2019-01-12T07:33:09.000Z' 1759 1 1 10000 -3.24000000000000 10000
'2019-01-12T09:50:07.000Z' 1759 1 1 100000 -60.5200000000000 10000
'2019-01-12T11:04:08.000Z' 1759 1 1 10000 -1.18000000000000 10000
'2019-01-12T12:05:47.000Z' 1759 1 1 10000 -39.2100000000000 10000
'2019-01-12T12:16:37.000Z' 1759 1 1 100000 90.9600000000000 10000
'2019-01-12T12:20:49.000Z' 1759 1 1 10000 -15.6900000000000 10000
'2019-01-12T14:33:23.000Z' 1759 1 1 100000 -19.4300000000000 10000
'2019-01-12T14:33:52.000Z' 1759 1 1 10000 -41.2200000000000 10000
'2019-01-12T16:32:48.000Z' 1759 0 1 100 0.850000000000000 10000
'2019-01-13T09:09:52.000Z' 1759 1 1 100000 -107.990000000000 10000
'2019-01-13T10:24:40.000Z' 1759 0 1 100 -5.02000000000000 10000
'2019-01-13T14:41:24.000Z' 1759 1 1 100000 56.4800000000000 10000
'2019-01-13T20:57:29.000Z' 1759 1 1 100000 -90.6100000000000 10000
'2019-01-14T03:43:44.000Z' 1759 1 1 10000 26.9200000000000 10000
'2019-01-14T04:15:00.000Z' 1759 1 1 10000 -15.6100000000000 10000
'2019-01-14T04:39:01.000Z' 1759 0 1 10000 20.1600000000000 10000
'2019-01-14T04:46:09.000Z' 1759 1 1 10000 -1.75000000000000 10000
'2019-01-14T05:08:17.000Z' 1759 0 1 10000 -1.41000000000000 10000
'2019-01-14T05:16:31.000Z' 1759 1 1 100000 31.6600000000000 10000
'2019-01-14T05:21:41.000Z' 1759 1 1 10000 -17.4700000000000 10000
'2019-01-14T05:30:47.000Z' 1759 0 1 10000 -21.6300000000000 10000
'2019-01-14T05:49:12.000Z' 1759 1 1 10000 -15.1300000000000 10000
for each ID I want to create a new column which will be the cumulative sum of Variable 1.
I'm using
[ids, ~, rows] = unique(YTD(:, 2));
to get the unique IDs and indices of those ID
Then I would like to calculate the cumulative sum for each ID.
Seems that cumsun doesn't work on an index.
Is there a way to use it or no?
Thanks in advance
  1 个评论
madhan ravi
madhan ravi 2019-2-25
编辑:madhan ravi 2019-2-25
You forgot how your expected result should look like and upload your data as .mat file. Which version of matlab are you using, 2018b?

请先登录,再进行评论。

采纳的回答

KSSV
KSSV 2019-2-25
Say you have this data as a variable seperately....Let ID, var1, var2 be your variables. Do the following:
[C,ia,ib] = unique(ID) ;
N = length(C) ;
iwant = cell(N,1) ;
for i = 1:N
iwant{i} = cumsum(var1(ib==i)) ;
end

更多回答(2 个)

Andrei Bobrov
Andrei Bobrov 2019-2-25
编辑:Andrei Bobrov 2019-2-25
T = readtable('now1.txt','HeaderLines',1,'ReadRowNames',0);
T2 = varfun(@cumsum,T,'GroupingVariable',2,'InputVariables' ,3:7);
out = [T(:,1:2),T2(:,3:end)];
Here now1.txt - file with your data.

Kaspar Bachmann
Kaspar Bachmann 2020-9-28
You could also use a combination of unique() and accumarray():
Data.ID = [1;1;2;3;4;5;6;6;7;7];
Data.Data = rand(length(Data.ID),1);
[C,ia,ic] = unique(Data.ID);
NewData.ID = C;
NewData.CumData = accumarray(ic,Data.Data);
% Output
OriginalTable = struct2table(Data)
OutputTable = struct2table(NewData)
Hope this helps.
Best regards

类别

Help CenterFile Exchange 中查找有关 Time Series Events 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by