Why identical outputs despite different inputs to a machine learning models
3 次查看(过去 30 天)
显示 更早的评论
why do I get the same predicted values despite having different inputs in a SVM model. For example, suppose the training data is matrixA, and the Two different Prediction data are MatrixC and MatrixD. Why is the predicted values identical?
A=trainedModel.predictFcn(matrixA);
B=trainedModel.predictFcn(matrixB);
MatrixB is a concatination of MatrixA with another Matrix---
I appreciate any help I can get?
0 个评论
回答(1 个)
Bernhard Suhm
2019-3-6
Of course it could predict the same category for different kinds of inputs, especially if there aren't a lot of categories... Or for some reason, only the features represented by matrixA determined the final model, and the training of B ignored the additional features provided in the concatenated matrix. Or what am I missing?
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Gaussian Process Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!