implementation for iterative wiener filter

11 次查看(过去 30 天)
This is my implementation in the iterative wiener filter in this paper : http://www.tsc.uc3m.es/~navia/LATDS07/IterativeWienerFilter.pdf
I wish it will help anyone
function wiener()
clc;
clear;
f=im2double(rgb2gray(imread('lena.jpg')));
imshow(f);
f=imresize(f,[32 32]);
figure,imshow(f)
[r c]=size(f);
h=fspecial('average');
g=imfilter(f,h,'circular');
s_avg = sum(sum(f))/(r*c);
SNR=90;
n_sigma=s_avg/(10^(SNR/20));
n=n_sigma*randn(size(f));
g=g+n;
[Nf,Mf]=size(g);
[Nh,Mh]=size(h);
L1=floor(Nh/2);
L2=floor(Mh/2);
H=zeros(Nf*Mf);
k=1;
for row=1:Mf,
for col=1:Nf,
hh=zeros(Nf,Mf);
hh(1:Nh,1:Mh)=h;
hh=circshift(hh,[col-1-L1,row-1-L2]);
H(k,:)=hh(:)';
k=k+1;
end
end
%%make vector of m^2*1 of the f,n,g
f=reshape(f',size(f,1)*size(f,2),1);
g=reshape(g',size(g,1)*size(g,2),1);
n=reshape(n',size(n,1)*size(n,2),1);
%%%calculate the autocorrelation matrix of f ,g,n
u=mean(g);
g1=autom(g-u);
Rg=toeplitz(g1);
n1=autom(n);
Rn=toeplitz(n1);%%%%%
Rf=Rg;
steps=10;
mse=zeros(1,steps);
for i=1:steps
B=Rf*H'*inv( (H*Rf*H') +Rn);
fHat=B*(g);
Rf=B*Rg*B';
im=reshape(fHat,[32 32]);
g=reshape(g,[32 32]);
%figure,imshow(im',[]);
mse(1,i) = sum(sum((im(:)-g(:))));
g=reshape(g',size(g,1)*size(g,2),1);
end
t=1:steps;
mse
plot(t,mse);
end
function [Rxx]=autom(x)
N=length(x);
Rxx=zeros(1,N);
for m=1: N+1
for n=1: N-m+1
Rxx(m)=(Rxx(m)+x(n)*x(n+m-1))/N-m+1;
end;
end
end

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Logical 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by