Deep Learning Script Precision Errors

1 次查看(过去 30 天)
Hi,
I am new to matlab. Below is my deep learning script which was originally prepared for a 5*5 matrix input and 5*1 matrix output. I updated the weight matrices and input and outputs based on my data. This trains well for a few samples than due to high number of precisions NaN values occur.
I tried to used vpa on multiple places to eliminate this issue. This helped to decrease the number of NaN's in the matrixes, however there are still problems. I also tried to use round ( to digits) with no success.
Probably my question has a very simple solution which I don't know. Specially, I wonder how do deep learning script writers solve the Inf and Nan problems during training of large matrixes.
I am pasting part of my code. If you request I may upload other parts of the project.
function [w1, w2, w3, w4] = DeepLearning(w1, w2, w3, w4, inputMatrix, correct_Output)
digits(150);
alpha = 0.01; %to control the learning rate
nRows = size(inputMatrix, 1);
for k = 1:nRows
%reshaped_input_Image = reshape(input_Image(:,:,k), 25, 1);
subMatrix = inputMatrix(k:k, :);
%disp("subMatrix");
%disp(subMatrix);
disp("W1");
disp(w1);
input_of_hidden_layer1 = vpa(w1*transpose(subMatrix), 150);
output_of_hidden_layer1 = vpa(ReLU(input_of_hidden_layer1), 150);
disp("W2");
disp(w2);
input_of_hidden_layer2 = vpa(w2* output_of_hidden_layer1, 150);
output_of_hidden_layer2 = vpa(ReLU(input_of_hidden_layer2), 150);
disp("W3");
disp(w3);
input_of_hidden_layer3 = vpa(w3* output_of_hidden_layer2, 150);
output_of_hidden_layer3 = vpa(ReLU(input_of_hidden_layer3), 150);
disp("W4");
disp(w4);
disp("output_of_hidden_layer3");
disp(output_of_hidden_layer3);
input_of_output_node = vpa(w4* output_of_hidden_layer3, 150);
disp("input_of_output_node");
disp(input_of_output_node);
final_output = vpa(Softmax(input_of_output_node), 150);
disp("final_output");
disp(final_output);
correct_Output_transpose = vpa(correct_Output(k:k, :)', 150);
disp("correct_Output_transpose");
disp(correct_Output_transpose);
error = vpa(correct_Output_transpose - final_output, 150);
disp("error");
disp(error);
delta = error;
disp("delta");
disp(delta);
error_of_hidden_layer3 = vpa(w4'*delta, 150);
delta3 = vpa((input_of_hidden_layer3>0).*error_of_hidden_layer3, 150);
disp("input_of_hidden_layer3");
disp(input_of_hidden_layer3);
disp("input_of_hidden_layer3>0");
disp(input_of_hidden_layer3>0);
disp("delta3");
disp(delta3);
error_of_hidden_layer2 = vpa(w3' * delta3, 150);
disp("error_of_hidden_layer2");
disp(error_of_hidden_layer2);
disp("input_of_hidden_layer2>0");
disp(input_of_hidden_layer2>0);
delta2 = vpa(round(((input_of_hidden_layer2>0).*error_of_hidden_layer2),150), 150);
disp("delta2");
disp(delta2);
error_of_hidden_layer1 = vpa(w2'*delta2, 150);
delta1 = vpa((input_of_hidden_layer1>0).*error_of_hidden_layer1, 150);
adjustment_of_w4 = vpa(alpha*delta*output_of_hidden_layer3', 150);
adjustment_of_w3 = vpa(alpha*delta3*output_of_hidden_layer2', 150);
adjustment_of_w2 = vpa(alpha*delta2*output_of_hidden_layer1', 150);
adjustment_of_w1 = vpa( alpha*delta1*transpose(subMatrix)', 150);
w1 = vpa(w1+ adjustment_of_w1, 150);
w2 = vpa(w2+ adjustment_of_w2, 150);
w3 = vpa(w3+ adjustment_of_w3, 150);
w4 = vpa(w4+ adjustment_of_w4, 150);
NrNaNW1 = sum(isnan(w1(:)));
NrNaNW2 = sum(isnan(w2(:)));
NrNaNW3 = sum(isnan(w3(:)));
NrNaNW4 = sum(isnan(w4(:)));
if(NrNaNW1 >0 || NrNaNW2 >0 || NrNaNW3 >0 || NrNaNW4 >0 )
disp("NAN olustu k=" + k);
end
disp(k + ". sample tamamland?");
end
end

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Pattern Recognition and Classification 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by