ボード線図が分かっている場合の伝達関数の求め方を教えてください
23 次查看(过去 30 天)
显示 更早的评论
以下のコードで得られるボード線図の伝達関数を求めたいです。
E=7.06*10^10;
B=3.0*10^(-2);
H=1.5*10^(-3);
l=1.0;
I=(B*H^3)/12;
p=2680;
A=B*H;
xL=0.05;
w=0.1:1/1000:100;
wr=w*2*pi;
k=((p*A.*wr.^2)./(E*I)).^(1/4);
c=exp(1i.*k.*xL);
F1=c;
ReF1=real(F1);
ImF1=imag(F1);
rF1=sqrt(ReF1.^2+ImF1.^2);
rF1dB=20*log10(rF1);
sitaF1=(atan(ImF1./ReF1))*(180/pi);
figure(1)
subplot(2,1,1)
semilogx(w,rF1dB,'r')
ylim([-3 5])
ylabel('Gain [dB]')
semilogx(w,sitaF1,'r')
xlabel('Frequency [Hz]')
ylabel('Phase [degree]')
現在はinvfreqsを用いた以下のコードを使って伝達関数を求めているのですが、希望のボード線図となるようなものは得られていません。
[F1b,F1a]=invfreqs(F1,wr,1,0);
sys_s_F1=tf(F1b,F1a);
どのようにすればfigure(1)のボード線図となる伝達関数を求めることができるのでしょうか?
0 个评论
采纳的回答
Hiroumi Mita
2019-4-8
掲題の問題について
以下のようにシステム同定の手法でモデルを推定しますと
一応、ほぼにたようなボード線図を書くことはできます。
しかし、得られた伝達関数は複素係数のものになり
現実性は乏しく、無理やり数値計算で合わせこんだ印象があります。
もともと推定したいモデルのボード線図は
周波数帯域において、ゲイン特性が一定数(0dB)、位相は
周波数が上がるとじりじり上がるもので、現実的に
このようなモデルがあるのかどうか、必要性はあるのか、
数式表現できるものなのか大いに疑問があります。
この問題の前提条件を再確認されることをお勧めします。
E=7.06*10^10;
B=3.0*10^(-2);
H=1.5*10^(-3);
l=1.0;
I=(B*H^3)/12;
p=2680;
A=B*H;
xL=0.05;
w=0.1:1/1000:100;
wr=w*2*pi;
k=((p*A.*wr.^2)./(E*I)).^(1/4);
c=exp(1i.*k.*xL);
F1=c;
ReF1=real(F1);
ImF1=imag(F1);
rF1=sqrt(ReF1.^2+ImF1.^2);
rF1dB=20*log10(rF1);
sitaF1=(atan(ImF1./ReF1))*(180/pi);
figure(1)
subplot(2,1,1)
semilogx(w,rF1dB,'r')
ylim([-3 5])
ylabel('Gain [dB]')
subplot(2,1,2)%
semilogx(w,sitaF1,'r')
xlabel('Frequency [Hz]')
ylabel('Phase [degree]')
%システム同定
[F1b,F1a]=invfreqs(F1,wr,1,0);
sys_s_F1=tf(F1b,F1a);
mag=rF1
phase = (atan(ImF1./ReF1))*(180/pi);
response = mag.*exp(1j*phase*pi/180);
fr_data = idfrd(response,wr,1/(100*2));
% Import mydata
% State space model estimation
Options = n4sidOptions;
Options.Display = 'on';
Options.N4Weight = 'CVA';
Options.N4Horizon = [15 15 15];
ss1 = n4sid(fr_data, 9, 'Ts', 0, Options)
tf(ss1)%伝達関数表示
figure;bode(ss1,{0,100*2*pi})%ボード線図
更多回答(2 个)
Hiroumi Mita
2019-4-17
ボード線図において、例えば次のような特徴を持つものは
無駄時間が該当します。
#1. ゲイン特性が周波数帯域において一様0[dB]
#2. 位相特性は周波数が高くなると遅れる
このサンプルが無駄時間1[s]のボード線図です。
s=tf('s')
sys=exp(-s)
figure;bode(sys)
無駄時間は入力が入っても一定時間(無駄時間)無反応なものを
言います。
伝達関数は
sys=exp(-T*s)
T:無駄時間
です。
もし、このシステムを対象にするなら、出力が何秒遅れて入力に反応したかを
調べればよく、ボード線図から推定するのは意味がありません。
何らかの動特性を持つシステムは、無駄時間のみ表現されるものはないと思われます。
動特性(時間による変化)+無駄時間が一般的です。
基本的に、ボード線図からモデルを推定するとき、周波数の変化に対する
ゲイン特性の変化、位相の変化を必要とします。
そこで、示されたボード線図は、何らかの実験の不手際により、
ゲイン特性が正しく取れなかったか?、元の仮定では動特性を無視したのか?
そんなことが考えられるわけです。
動特性は示された系に無いのか?もし、本当にないのならそれはボード線図で扱う領域ではないかもしれません。
そのあたりを再考いただければと思います。
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 データの解析 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!