DICOM imageとDeep Learning
2 次查看(过去 30 天)
显示 更早的评论
DICOM画像をdeeplearningで学習させているときに、生じる問題があるのでしょうか。
png画像に変換したほうがいいのでしょうか。
以下は自分で作成したdeep learningの分類に関するスクリプトです。
currentdirectory = pwd;
imds = imageDatastore(fullfile(currentdirectory, categories),'IncludeSubfolders',true,'FileExtensions','.dcm','LabelSource', 'foldernames','ReadFcn',@dicomread);
% 検証枚数を増やす
numTrainFiles = 1064;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
% 分類器の作成
layers = [
imageInputLayer([30 30 1])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',1)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',1)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
dropoutLayer(0.2)
fullyConnectedLayer(9)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MiniBatchSize',128, ...
'InitialLearnRate',0.001, ...
'MaxEpochs',30, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',50, ...
'Verbose',false, ...
'Plots','training-progress');
net17= trainNetwork(imdsTrain,layers,options);
YPred = classify(net17,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
誤り等あったら教えていただきたいです。
0 个评论
采纳的回答
更多回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 イメージを使用した深層学習 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!