Binary image sequence ROI tracking

3 次查看(过去 30 天)
Frank M
Frank M 2019-8-21
编辑: Frank M 2019-8-21
I asked in this post and another, where I partially used ImageJ to do tracking and attempted to use MATLAB to calculate the area according to the centroid info obtained from ImageJ tracking. However, due to some algorithm difference, it became clear that the centroids found by MATLAB do not always align with those found by ImageJ. For example, some clusters are treated as 2 separate blobs in ImageJ may be treated as a whole in MATLAB, etc. So I figured I will use MATLAB for both trajectory tracking and size calculation.
I'm looking to modify the Motion-based Multi-Object Tracking example. The issue with the code within the example is with the object detection part, where the morphological operations below seem to not work well with cells and clusters:
mask = imopen(mask, strel('rectangle', [3,3]));
mask = imclose(mask, strel('rectangle', [15, 15]));
mask = imfill(mask, 'holes');
Since the output mask is a binary image, I did the processing processing in ImageJ so I don't have to use to processing in this script. In other words, I have a good binary image sequence that I'm looking to have MATLAB do the projectile tracking and size calculation. I found that the obj.blobAnalyer() doesn't work at all with my binary image sequence, while regionprops() does. Here's what I have now:
I'm seeing very poor tracking and I'm just wondering what I'm not doing right. Please let me know what should be changed or there's a better way to do it. Many thanks in advance!
function MotionBasedMultiObjectTrackingExample()
% Create System objects used for reading video, detecting moving objects,
% and displaying the results.\
global framenum
framenum = 1;
obj = setupSystemObjects();
tracks = initializeTracks(); % Create an empty array of tracks.
nextId = 1; % ID of the next track
% Detect moving objects, and track them across video frames.
while ~isDone(obj.reader)
framenum = framenum + 1;
frame = readFrame();
[centroids, bboxes, mask] = detectObjects(frame);
predictNewLocationsOfTracks();
[assignments, unassignedTracks, unassignedDetections] = ...
detectionToTrackAssignment();
updateAssignedTracks();
updateUnassignedTracks();
deleteLostTracks();
createNewTracks();
displayTrackingResults();
end
%% Create System Objects
% Create System objects used for reading the video frames, detecting
% foreground objects, and displaying results.
function obj = setupSystemObjects()
% Initialize Video I/O
% Create objects for reading a video from a file, drawing the tracked
% objects in each frame, and playing the video.
% Create a video file reader.
obj.reader = vision.VideoFileReader('myIndexed.avi');
% Create two video players, one to display the video,
% and one to display the foreground mask.
obj.maskPlayer = vision.VideoPlayer;
obj.videoPlayer = vision.VideoPlayer;
% Create System objects for foreground detection and blob analysis
% The foreground detector is used to segment moving objects from
% the background. It outputs a binary mask, where the pixel value
% of 1 corresponds to the foreground and the value of 0 corresponds
% to the background.
obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);
% Connected groups of foreground pixels are likely to correspond to moving
% objects. The blob analysis System object is used to find such groups
% (called 'blobs' or 'connected components'), and compute their
% characteristics, such as area, centroid, and the bounding box.
obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
'AreaOutputPort', true, 'CentroidOutputPort', true, ...
'MinimumBlobArea', 1, 'MaximumBlobArea', 6000);
end
function tracks = initializeTracks()
% create an empty array of tracks
tracks = struct(...
'id', {}, ...
'bbox', {}, ...
'kalmanFilter', {}, ...
'age', {}, ...
'totalVisibleCount', {}, ...
'consecutiveInvisibleCount', {});
end
%% Read a Video Frame
% Read the next video frame from the video file.
function frame = readFrame()
frame = obj.reader.step();
end
%% Detect Objects
% The |detectObjects| function returns the centroids and the bounding boxes
% of the detected objects. It also returns the binary mask, which has the
% same size as the input frame. Pixels with a value of 1 correspond to the
% foreground, and pixels with a value of 0 correspond to the background.
%
% The function performs motion segmentation using the foreground detector.
% It then performs morphological operations on the resulting binary mask to
% remove noisy pixels and to fill the holes in the remaining blobs.
function [centroids, bboxes, mask] = detectObjects(frame)
% Detect foreground.
mask = imcomplement(imbinarize(imread...
('Substack (390-555)_Subtrack Background_Threshold_Fill Holes_Dilate.tif',framenum)));
centroids1 = regionprops(mask,'Centroid'); %regionprops successfully finds the centroids, while blobanalyzer in original code fail to do so
bboxes1 = regionprops(mask,'BoundingBox'); %not int32, each row for each bbox, total of 4 rows
[blobcount,~] = size(bboxes1); %a = number of detections
centroids = zeros(blobcount,2); %initialize centroids
bboxes = zeros(blobcount,4); %initialize boundingbox
for i = 1:blobcount
centroids(i,:) = ceil(cell2mat(struct2cell(centroids1(i))));
bboxes(i,:) = ceil(cell2mat(struct2cell(bboxes1(i))));
end
end
%% Predict New Locations of Existing Tracks
% Use the Kalman filter to predict the centroid of each track in the
% current frame, and update its bounding box accordingly.
function predictNewLocationsOfTracks()
for i = 1:length(tracks)
bbox = tracks(i).bbox;
% Predict the current location of the track.
predictedCentroid = predict(tracks(i).kalmanFilter);
% Shift the bounding box so that its center is at
% the predicted location.
predictedCentroid = int32(predictedCentroid) - int32(bbox(3:4) / 2);
tracks(i).bbox = [predictedCentroid, bbox(3:4)];
end
end
function [assignments, unassignedTracks, unassignedDetections] = ...
detectionToTrackAssignment()
nTracks = length(tracks);
nDetections = size(centroids, 1);
% Compute the cost of assigning each detection to each track.
cost = zeros(nTracks, nDetections);
for i = 1:nTracks
cost(i, :) = distance(tracks(i).kalmanFilter, centroids);
end
% Solve the assignment problem.
costOfNonAssignment = 20;
[assignments, unassignedTracks, unassignedDetections] = ...
assignDetectionsToTracks(cost, costOfNonAssignment);
end
%% Update Assigned Tracks
% The |updateAssignedTracks| function updates each assigned track with the
% corresponding detection. It calls the |correct| method of
% |vision.KalmanFilter| to correct the location estimate. Next, it stores
% the new bounding box, and increases the age of the track and the total
% visible count by 1. Finally, the function sets the invisible count to 0.
function updateAssignedTracks()
numAssignedTracks = size(assignments, 1);
for i = 1:numAssignedTracks
trackIdx = assignments(i, 1);
detectionIdx = assignments(i, 2);
centroid = centroids(detectionIdx, :);
bbox = bboxes(detectionIdx, :);
% Correct the estimate of the object's location
% using the new detection.
correct(tracks(trackIdx).kalmanFilter, centroid);
% Replace predicted bounding box with detected
% bounding box.
tracks(trackIdx).bbox = bbox;
% Update track's age.
tracks(trackIdx).age = tracks(trackIdx).age + 1;
% Update visibility.
tracks(trackIdx).totalVisibleCount = ...
tracks(trackIdx).totalVisibleCount + 1;
tracks(trackIdx).consecutiveInvisibleCount = 0;
end
end
%% Update Unassigned Tracks
% Mark each unassigned track as invisible, and increase its age by 1.
function updateUnassignedTracks()
for i = 1:length(unassignedTracks)
ind = unassignedTracks(i);
tracks(ind).age = tracks(ind).age + 1;
tracks(ind).consecutiveInvisibleCount = ...
tracks(ind).consecutiveInvisibleCount + 1;
end
end
%% Delete Lost Tracks
% The |deleteLostTracks| function deletes tracks that have been invisible
% for too many consecutive frames. It also deletes recently created tracks
% that have been invisible for too many frames overall.
function deleteLostTracks()
if isempty(tracks)
return;
end
invisibleForTooLong = 20;
ageThreshold = 8;
% Compute the fraction of the track's age for which it was visible.
ages = [tracks(:).age];
totalVisibleCounts = [tracks(:).totalVisibleCount];
visibility = totalVisibleCounts ./ ages;
% Find the indices of 'lost' tracks.
lostInds = (ages < ageThreshold & visibility < 0.6) | ...
[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;
% Delete lost tracks.
tracks = tracks(~lostInds);
end
%% Create New Tracks
% Create new tracks from unassigned detections. Assume that any unassigned
% detection is a start of a new track. In practice, you can use other cues
% to eliminate noisy detections, such as size, location, or appearance.
function createNewTracks()
centroids = centroids(unassignedDetections, :);
bboxes = bboxes(unassignedDetections, :);
for i = 1:size(centroids, 1)
centroid = centroids(i,:);
bbox = bboxes(i, :);
% Create a Kalman filter object.
kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
centroid, [480, 640], [240, 320], 30);
% Create a new track.
newTrack = struct(...
'id', nextId, ...
'bbox', bbox, ...
'kalmanFilter', kalmanFilter, ...
'age', 1, ...
'totalVisibleCount', 1, ...
'consecutiveInvisibleCount', 0);
% Add it to the array of tracks.
tracks(end + 1) = newTrack;
% Increment the next id.
nextId = nextId + 1;
end
end
%% Display Tracking Results
% The |displayTrackingResults| function draws a bounding box and label ID
% for each track on the video frame and the foreground mask. It then
% displays the frame and the mask in their respective video players.
function displayTrackingResults()
% Convert the frame and the mask to uint8 RGB.
frame = im2uint8(frame);
mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
minVisibleCount = 8;
if ~isempty(tracks)
% Noisy detections tend to result in short-lived tracks.
% Only display tracks that have been visible for more than
% a minimum number of frames.
reliableTrackInds = ...
[tracks(:).totalVisibleCount] > minVisibleCount;
reliableTracks = tracks(reliableTrackInds);
% Display the objects. If an object has not been detected
% in this frame, display its predicted bounding box.
if ~isempty(reliableTracks)
% Get bounding boxes.
bboxes = cat(1, reliableTracks.bbox);
% Get ids.
ids = int32([reliableTracks(:).id]);
% Create labels for objects indicating the ones for
% which we display the predicted rather than the actual
% location.
labels = cellstr(int2str(ids'));
predictedTrackInds = ...
[reliableTracks(:).consecutiveInvisibleCount] > 0;
isPredicted = cell(size(labels));
isPredicted(predictedTrackInds) = {' predicted'};
labels = strcat(labels, isPredicted);
% Draw the objects on the frame.
frame = insertObjectAnnotation(frame, 'rectangle', ...
bboxes, labels);
% Draw the objects on the mask.
mask = insertObjectAnnotation(mask, 'rectangle', ...
bboxes, labels);
end
end
% Display the mask and the frame.
obj.maskPlayer.step(mask);
obj.videoPlayer.step(frame);
end
end

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Tracking and Motion Estimation 的更多信息

产品


版本

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by