Please help me solve this second order ODE

2 次查看(过去 30 天)
dx1 = x1 + 2*x2;
dx2 = sat(x1) + x2;

回答(1 个)

Star Strider
Star Strider 2019-9-10
Now that you have explained what ‘sat’ is, you posted two different Questions (this one and Help me solve this second order ODE dx1=x1+2*x2 dx2=sat(x1)+x2) with two similar but different differential equation systems.
These both run without error. Choose the one that best fits your needs:
function bc1()
tspan=[0 10];
IC=[1 1];
[T,X] = ode45(@(t,x) eq1(t,x),tspan,IC);
figure
plot(T,X(:,2))
hold
plot(T,X(:,1))
hold off
title('bc_1')
end
function dx=eq1(t,x)
dx=zeros(2,1);
k=x(2);
sat=@(k) min(max(k,-1),1)
x(2)=k;
dx(1)=sat(x(1)).*x(1)-x(2)
dx(2)=-x(1)-2*x(2)+1
end
and:
function bc2()
tspan=[0 10];
IC=[1 1];
[T,X] = ode45(@(t,x) eq2(t,x),tspan,IC);
figure
plot(T,X(:,2))
hold
plot(T,X(:,1))
hold off
title('bc_2')
end
function dx=eq2(t,x)
dx=zeros(2,1);
k=x(2);
sat=@(k) min(max(k,-1),1)
x(2)=k;
dx(1)=sat(x(1)).*x(1)+x(2)
dx(2)=x(1)+2*x(2)+1
end
Have fun!

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

标签

产品


版本

R2014a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by