NCA feature selection method in deep learning

10 次查看(过去 30 天)
cvx=cvpartition(size(Features,1),'kfold',5);
numvalidsets = cvx.NumTestSets;
n = cvx.TrainSize(1);
lambdavals=(linspace(0,11,11))./n;
lossvals = zeros(length(lambdavals),numvalidsets);
for w = 1:length(lambdavals)
for p =1:numvalidsets
train=1;
test=1;
indextrain=training(cvx,p);
for i=1:size(Features,1)
if indextrain(i)==1
XTrain(train,:)=Features(i,:);
YTrain(train)=label(i);
train=train+1;
else
XTest(test,:)=Features(i,:);
YTest(test)=label(i);
test=test+1;
end
end
TrainData= XTrain,YTrain;
TestData =XTest,YTest;
nca = fscnca(XTrain,YTrain,'FitMethod','exact', ...
'Solver','sgd','Lambda',lambdavals(w), ...
'IterationLimit',5,'Standardize',true);
lossvals(w,p) = loss(nca,XTest,YTest,'LossFunction','classiferror');
end
end
%%
meanloss = mean(lossvals,2);
[~,idx] = min(meanloss)% Find the index
bestlambda = lambdavals(idx) % Find the best lambda value
bestloss = meanloss(idx)
nca = fscnca(XTrain,YTrain,'FitMethod','exact','Solver','sgd',...
'Lambda',bestlambda,'Standardize',true,'Verbose',1);
total = 0.05; %??????
selidx = find(nca.FeatureWeights > total*max(1,max(nca.FeatureWeights)))
Best_Features_train = XTrain(:,selidx);
i am using NCA feature selection method with five-fold cross validation to select the best features my question is how to choose the value of 'total' veriable?
and for lambdavals??

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by