7 views (last 30 days)

Hello all,

I am trying to sovle a two non-linear equation system using fsolve and dogleg method. My objective function along with its jacobian is like this

function [F jacF]= objective(x)

F(:,1) = ((((x(:,2)./10).*k).*(x(:,1)./100)).^2).*(rZ - Rs) +(( Cmax .* ( x(:,1)./100 ) ).^2).*( w.^2.*(rZ - Rs) ) - (((x(:,2)./10).*k).*(x(:,1)./100));

F(:,2) = (x(:,2).*k).^2.*(iZ - w.*Ls) + (x(:,2).*k).^2.*x(:,1).*((w.*Ls)./200) + x(:,1).*((w.*Ls)/200).*(w.*Cmax).^2 + (w.*Cmax).^2 .*(iZ -(w.*Ls));

if nargout > 1 % need Jacobian

jacF = [- k - (k.^2.*x(:,2).*x(:,1).*(Rs - rZ))./50, - (k.^2.*x(:,2).^2.*(Rs - rZ))./100 - (Cmax.^2.*w.^2.*(Rs - rZ))./100;

2.*k.^2.*x(:,2).*(iZ - Ls.*w) + (k.^2.*Ls.*x(:,2).*w.*x(:,1))./100,(Ls.*Cmax.^2.*w.^3)./200 + (Ls.*k.^2.*x(:,2).^2.*w)./200];

end

end

Then my configuration for fsolve looks like this

options = optimoptions('fsolve','Display','iter-detailed','PlotFcn',@optimplotfirstorderopt);

% options.StepTolerance = 1e-13;

options.OptimalityTolerance = 1e-12;

options.FunctionTolerance = 6e-11;

options.MaxIterations = 100000;

options.MaxFunctionEvaluations = 400;%*400;

options.Algorithm = 'trust-region-dogleg';%'trust-region'%'levenberg-marquardt';%

% options.FiniteDifferenceType= 'central';

options.SpecifyObjectiveGradient = true;

fun= @objective;

x0 = [x1',x2'];

% Solve the function fun

[gwc,fval,exitflag,output,jacobianEval] =fsolve(fun,x0,options);

Being the values of the equations

Rs =

0.1640

Ls =

1.1000e-07

Cmax =

7.0000e-11

w =

1.7040e+08

rZ =

12.6518

iZ =

14.5273

K =

0.1007

x0 =

70.56 0.0759

My problem comes because I don't understand why fsolve seems not to iteratate over x(:,1) as i was expecting. I do know that the solution for the above system and parameters should be x1=58.8 and x2=0.0775.

In order to test the convergence of the method I am setting as initial guess x0 = [x1*(1+20/100) 0.0759] = [70.56 0.0759] ( 20 percent error in x1 and a higer value on x2), but the solution given by fsolve is the initial point, why is this? Am I doing something incorrect in my settings?

Thanks in advance

Torsten
on 12 Sep 2019

k = 0.1007;

rZ = 12.6518;

Rs = 0.164;

Cmax = 7.0e-11;

W = 1.704e8;

iZ = 14.5273;

Ls = 1.1e-7;

a1 = (k/1000)^2*(rZ-Rs);

a2 = (Cmax/100*W)^2*(rZ-Rs);

a3 = -k/1000;

b1 = k^2*(iZ-W*Ls);

b2 = k^2*W*Ls/200;

b3 = W*Ls/200*(Cmax*W)^2;

b4 = (Cmax*W)^2*(iZ-W*Ls);

A = (a2*b1-b2*a3+a1*b4)/(a1*b1);

B = (-a3*b3+a2*b4)/(a1*b1);

disk = A^2/4-B;

if disk >=0

x21squared = -A/2+sqrt(disk);

x22squared = -A/2-sqrt(disk);

end

solx1 = zeros(4,1);

solx2 = zeros(4,1);

iflag1 = 0;

if x21squared >= 0

iflag1 = 1;

solx2(1) = sqrt(x21squared);

solx2(2) = -sqrt(x21squared);

end

iflag2 = 0;

if x22squared >= 0

iflag2 = 1;

solx2(3) = sqrt(x22squared);

solx2(4) = -sqrt(x22squared);

end

solx1 = zeros(4,1);

if iflag1 == 1

solx1(1) = -a3/(a1*solx2(1)^2+a2);

solx1(2) = -a3/(a1*solx2(2)^2+a2);

end

if iflag2 == 1

solx1(3) = -a3/(a1*solx2(3)^2+a2);

solx1(4) = -a3/(a1*solx2(4)^2+a2);

end

if iflag1 == 1

solx1(1)

solx2(1)

solx1(2)

solx2(2)

a1*solx1(1)*solx2(1)^2+a2*solx1(1)+a3

b1*solx2(1)^2+b2*solx1(1)*solx2(1)^2+b3*solx1(1)+b4

a1*solx1(2)*solx2(2)^2+a2*solx1(2)+a3

b1*solx2(2)^2+b2*solx1(2)*solx2(2)^2+b3*solx1(2)+b4

end

if iflag2 == 1

solx1(3)

solx2(3)

solx1(4)

solx2(4)

a1*solx1(3)*solx2(3)^2+a2*solx1(3)+a3

b1*solx2(3)^2+b2*solx1(3)*solx2(3)^2+b3*solx1(3)+b4

a1*solx1(4)*solx2(4)^2+a2*solx1(4)+a3

b1*solx2(4)^2+b2*solx1(4)*solx2(4)^2+b3*solx1(4)+b4

end

Torsten
on 13 Sep 2019

This is likely to break the bi-quadratic equation that you made, then should I go again for an interative process right?

No. Insert the expression from F1 for x1 in F2, multiply by the denominator, order according to powers of x2 and use MATLAB's "roots" to solve for x2. This will come out much more stable than using "fsolve".

Sign in to comment.

Sign in to answer this question.

Opportunities for recent engineering grads.

Apply Today
## 7 Comments

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745078

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745078

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745090

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745090

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745103

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745103

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745115

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745115

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745124

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745124

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745157

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745157

## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745159

⋮## Direct link to this comment

https://ww2.mathworks.cn/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745159

Sign in to comment.