Specrtal Method for Heat Equation

1 次查看(过去 30 天)
Muhammad Usman
Muhammad Usman 2019-11-19
I have one dimensional homogeneous heat eqaution.
I want to solve it numerically using by supposing where
Taking time derivative using farward difference method , after combinging I get
, where and A is sparse matrix with on its main diagonal.
I tried to write it in MATLAB, but got wrong answers, please look into my code
clc;clear all;close all;
% problem u_t = beta u_xx% beta 1
% exact solution
%%
u = @(x,t) (4*pi/3)*(((sin(pi*x))*exp(-(pi^2)*t)));
t0 = 0;
tn = 0.8;
x0 = 0;
xn = 1;
dx = 0.0625;
dt = 0.004;
x = (x0:dx:xn)';
t = (t0:dt:tn)';
beta = 1;
s = beta*dt/dx^2;
nx = (xn-x0)/dx;
nt = (tn-t0)/dt;
%% we start indexing from zero
nx_int = nx; % number of interior points in spatial dim
nt_int = nt-1; % number of interior points in temporal dim
%% construction of diagonal matrix
indx1 = ones(1,nx-2);
indx2 = ones(1,nx-1);
v =((1:nx)*pi).^2;
A = full(diag(v,0));
%% boundary conditions
% U(0,k) = 0
% U(20,k) = 0
% initial condition
% int_cond = @(x) sin(pi/4*x).*(1+2*cos(pi/4*x));
%%
fun = @(x) x.*(1-x).*sin((1:nx+1)*pi*x);
q = integral(fun,0,1,'ArrayValued',true);
U=zeros(nx+1,nt+1);
U_exact=zeros(nx+1,nt+1);
U(:,1) = q';
U(1,:)=0;
U(nx+1,:)=0;
% A U(k+1) = U(k) + b
%% numerical solution construction
for k=1:nt_int+1
U(2:nx_int+1,k+1) = U(2:nx_int+1,k)+ dt*A\U(2:nx_int+1,k+1);
end
%% exact solution construction
for k=1:nt+1
U_exact(1:nx+1,k) =u(x,t(k));
end
Numerical_sol = U;
Analytical_sol = U_exact;
%Plots
figure(1)
subplot(2,2,1)
mesh(t,x,U)
xlabel('Temporal dim')
ylabel('Spatial dim')
zlabel('Numerical sol')
subplot(2,2,2)
mesh(t,x,U_exact)
xlabel('Temporal dim')
ylabel('Spatial dim')
zlabel('Analytical sol')
subplot(2,2,3)
mesh(t,x,U_exact-U)
xlabel('Temporal dim')
ylabel('Spatial dim')
zlabel('Error in sol')
and tell me my mistake.
Thanks

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Surface and Mesh Plots 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by