Reducing 2nd order ODE into coupled ODE. Solve using Euler Method and graph.
17 次查看(过去 30 天)
显示 更早的评论
Hello, I'm trying to get a numerical solution for the given problem but I can't find a way to get it to work.
t0 = 0;
t = 5;
h = 0.1;
N = (t-t0)/h;
T = [t0:h:t;]';
Y = zeros(size(t));
Y(1) = 3;
%Start of Euler Method
syms y(t)
E = diff(y,2) + .1*diff(y) + .3*y == .02*y^3;
V = odeToVectorField(E)
for i = 1: N
P = (V(2))
Y(i+1) = Y(i) + h*P(i)
S = Y(i+1)
end
plot(T,Y,'o')
the error I'm getting is the following:
The following error occurred converting from sym to double:
Unable to convert expression into double array.
Error in Euler (line 19)
Y(i+1) = Y(i) + h*P(i)
0 个评论
回答(1 个)
Stephan
2019-12-9
tspan = [0 5]; % time span to integrate
y0 = [3 0]; % initial conditions
%Start of Euler Method
syms y(t)
E = diff(y,2) + .1*diff(y) + .3*y == .02*y^3;
V = odeToVectorField(E);
odefun = matlabFunction(V,'Vars',{'t','Y'});
[t,y] = ode45(odefun,tspan,y0);
plot(t,y,'o')
3 个评论
Stephan
2019-12-9
The result of odeToVectorField is a symbolic expression. This can not be used in the way you want it.
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!