Inverse Laplace Transform for a complex transfer function
4 次查看(过去 30 天)
显示 更早的评论
For my signals project I was able to represent a system using a transfer function consisting of 50 zeros and 60 poles. However, when I tried to get the time domain function of this laplace domain impulse response using ilaplace() with the numerators and denominators as inputs, the code has been running for hours with no end.
I understand that due to the complexity of the transfer function matlab may not be able to find an exact answer. Is there a way to estimate or possible improve the identification of this time domain equation? Thank you
10 个评论
David Goodmanson
2019-12-11
Hi Darren,
do you mean that F(s) is entirely described by a ratio of polynomials and that you have the positions of all the zeros and poles?
Darren Tran
2019-12-11
Hi David,
Yes, all the poles and zeros have been found and F(s) is a ratio of polynomials. Is there a better way to find the inverse laplace?
Thank you for your time.
David Goodmanson
2019-12-11
Hi Darren,
what can you say about the locations of the poles in the s plane (all negative? all distinct? minimum spacing, etc)
Darren Tran
2019-12-11
Transfer function of system
% tf6 =
%
% From input "u1" to output "y1":
%
% -6.226e14 (+/- 1.801e23) s^50 - 1.406e16 (+/- 1.397e25) s^49 + 8.548e17 (+/- 1.196e27) s^48
%
% + 4.345e19 (+/- 7.827e28) s^47 + 9.782e20 (+/- 3.5e30) s^46 + 2.544e22 (
%
% +/- 1.269e32) s^45 + 5.779e23 (+/- 3.364e33) s^44 + 3.644e24 (+/- 6.743e34) s^43
%
% - 1.348e25 (+/- 1.047e36) s^42 - 2.659e26 (+/- 1.27e37) s^41 - 8.311e27 (
%
% +/- 1.188e38) s^40 - 6.417e28 (+/- 8.344e38) s^39 - 2.217e29 (+/- 4.219e39) s^38
%
% + 6.008e29 (+/- 1.462e40) s^37 - 6.462e29 (+/- 3.238e40) s^36 - 5.825e30 (
%
% +/- 4.437e40) s^35 + 1.03e29 (+/- 3.587e40) s^34 - 3.185e29 (+/- 1.619e40) s^33
%
% - 1.096e29 (+/- 5.946e39) s^32 + 9.797e27 (+/- 1.52e39) s^31 - 1.609e27 (
%
% +/- 3.429e38) s^30 + 1.159e25 (+/- 1.074e38) s^29 + 1.467e24 (+/- 2.715e37) s^28
%
% - 3.907e22 (+/- 4.977e36) s^27 - 1.293e21 (+/- 6.965e35) s^26 - 7.722e19 (
%
% +/- 7.773e34) s^25 + 2.404e18 (+/- 7.1e33) s^24 - 9.765e16 (+/- 5.451e32) s^23
%
% - 7.257e14 (+/- 3.5e31) s^22 - 4.564e13 (+/- 1.963e30) s^21 - 1.388e13 (
%
% +/- 8.909e28) s^20 - 2.323e11 (+/- 4.094e27) s^19 + 1.235e10 (+/- 1.583e26) s^18
%
% - 1.486e08 (+/- 7.64e24) s^17 + 1.401e07 (+/- 5.14e23) s^16 + 5.671e04 (
%
% +/- 1.497e22) s^15 + 2.435e04 (+/- 1.176e21) s^14 - 40.67 (+/- 2.494e19) s^13
%
% + 20.68 (+/- 1.543e18) s^12 + 0.6052 (+/- 3.44e16) s^11 - 0.009592 (+/- 1.484e15) s^10
%
% + 0.0003821 (+/- 4.398e13) s^9 + 4.003e-06 (+/- 1.474e12) s^8 - 6.035e-08 (
%
% +/- 3.966e10) s^7 + 2.338e-08 (+/- 9.562e08) s^6 - 5.411e-10 (+/- 1.838e07) s^5
%
% - 1.838e-11 (+/- 2.944e05) s^4 + 1.819e-13 (+/- 3599) s^3 + 2.949e-15 (+/
%
% - 33.09) s^2 + 1.31e-16 (+/- 0.1979) s - 2.658e-19 (+/- 0.0006273)
%
% -----------------------------------------------------------------------------------------------
%
% s^60 + 1.899e06 (+/- 1.357e14) s^59 + 1.639e09 (+/- 4.228e15) s^58 + 3.51e11 (+/
%
% - 5.578e17) s^57 + 4.653e13 (+/- 1.798e19) s^56 + 4.57e15 (+/- 6.798e20) s^55
%
% + 3.538e17 (+/- 2.246e22) s^54 + 2.217e19 (+/- 6.035e23) s^53 + 1.148e21 (
%
% +/- 3.098e25) s^52 + 4.983e22 (+/- 5.6e26) s^51 + 1.824e24 (+/- 2.159e28) s^50
%
% + 5.657e25 (+/- 2.839e29) s^49 + 1.487e27 (+/- 2.863e31) s^48 + 3.299e28 (
%
% +/- 9.496e32) s^47 + 6.138e29 (+/- 1.494e34) s^46 + 9.528e30 (+/- 5.066e35) s^45
%
% + 1.228e32 (+/- 6.374e36) s^44 + 1.298e33 (+/- 6.645e37) s^43 + 1.105e34 (
%
% +/- 3.778e38) s^42 + 7.44e34 (+/- 1.666e39) s^41 + 3.847e35 (+/- 4.62e39) s^40
%
% + 1.472e36 (+/- 1.406e40) s^39 + 3.955e36 (+/- 9.029e40) s^38 + 7.153e36 (
%
% +/- 2.322e41) s^37 + 8.251e36 (+/- 2.837e41) s^36 + 5.806e36 (+/- 3.443e41) s^35
%
% + 2.847e36 (+/- 4.663e40) s^34 + 1.043e36 (+/- 1.239e40) s^33 + 2.946e35 (
%
% +/- 6.114e39) s^32 + 6.593e34 (+/- 9.715e38) s^31 + 1.199e34 (+/- 3.931e38) s^30
%
% + 1.81e33 (+/- 4.698e37) s^29 + 2.308e32 (+/- 1.533e37) s^28 + 2.523e31 (
%
% +/- 1.646e36) s^27 + 2.395e30 (+/- 2.413e35) s^26 + 1.994e29 (+/- 8.35e34) s^25
%
% + 1.469e28 (+/- 1.041e34) s^24 + 9.641e26 (+/- 9.937e32) s^23 + 5.671e25 (
%
% +/- 7.081e31) s^22 + 3.003e24 (+/- 5.501e30) s^21 + 1.437e23 (+/- 1.657e29) s^20
%
% + 6.23e21 (+/- 8.191e27) s^19 + 2.451e20 (+/- 3.165e26) s^18 + 8.757e18 (
%
% +/- 2.724e25) s^17 + 2.843e17 (+/- 1.716e24) s^16 + 8.377e15 (+/- 2.829e22) s^15
%
% + 2.238e14 (+/- 1.025e21) s^14 + 5.405e12 (+/- 6.42e19) s^13 + 1.176e11 (
%
% +/- 3.507e18) s^12 + 2.296e09 (+/- 1.11e17) s^11 + 3.996e07 (+/- 3.805e15) s^10
%
% + 6.154e05 (+/- 2.567e14) s^9 + 8299 (+/- 1.338e13) s^8 + 96.76 (+/- 2.452e11) s^7
%
% + 0.9582 (+/- 1.675e10) s^6 + 0.007867 (+/- 6.701e08) s^5 + 5.172e-05 (+/
%
% - 1.53e07) s^4 + 2.58e-07 (+/- 1.609e06) s^3 + 8.936e-10 (+/- 3.073e04) s^2
%
% + 1.807e-12 (+/- 1041) s + 1.364e-15 (+/- 47.24)
Darren Tran
2019-12-11
Hi Chuguang,
How would I be able to decompose the above transfer function into partial fractions?
Thank you for your time.
David Goodmanson
2019-12-11
编辑:David Goodmanson
2019-12-11
Hi Darren,
There are not positions of poles and zeros here, just two polynomials with coefficients. Those coefficients all have values like -6.226e14 (+/- 1.801e23), meaning that they are of no use at all. You might want to consider how realistic it is to have a transfer function with 50 poles and 60 zeros. If you did know, accurately, the positions of all those poles and zeros then it's certainly possible to find the answer numericaly in short order, but there could well be big problems with numerical accuracy in such a calculation.
Walter Roberson
2019-12-11
-6.226e14 (+/- 1.801e23) is pretty much a nonsense number, with inprecision 1 billion times larger than the number itself.
Are these numbers coming from the output of cftool (Curve Fitting Toolbox) ?
Shashwat Bajpai
2019-12-26
I would be in a better state to help you if the coefficients mentioned are in a MATLAB executable format.
回答(1 个)
Darren Tran
2019-12-30
Hello I have found the solution. The 50 poles 60 zeros method was wrong and I ended up using 2 zeroes and three poles. I then did an inverse laplace and found the original function. Than you everyone for you help.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!发生错误
由于页面发生更改,无法完成操作。请重新加载页面以查看其更新后的状态。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
