opts = detectImportOptions('mlaysia.xlsx','DataRange','B3');
T1=readtable('mlaysia.xlsx',opts,'ReadVariableNames',false);
T1_data = T1.Variables;
for i=1:4
T1_array{i}=T1_data(1:end,i)';
end
T1_a=(T1_array)';
numTimeStepsTrain = floor(0.9*numel(T1_a));
T1Train = T1_a(1:numTimeStepsTrain+1);
T1Test = T1_a(numTimeStepsTrain+1:end);
XT1Train = T1Train(1:end-1);
YT1Train = T1Train(2:end);
numFeatures=2;
numResponse=1;
numHiddenUnits=200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponse)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',200, ...
'GradientThreshold',1, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XT1Train,YT1Train,layers,options);