CONVERSION OF ODE TO RECURRENCE RELATION

1 次查看(过去 30 天)
syms x k r f(x) g(x) a b beta b1 M L
syms F(k) G(k)
F(0)=0;F(1)=1;F(2)=a/2;G(0)=0;G(1)=1/2;G(2)=b/2;b1=1/beta;
%%%%dnf=diff(f,x,n)
f=F(k);g=G(k);d1f=(k+1)*F(k+1);d2f=(k+1)*(k+2)*F(k+2);d3f=(k+1)*(k+2)*(k+3)*F(k+3);d1g=(k+1)*G(k+1);
d2g=(k+1)*(k+2)*G(k+2);d3g=(k+1)*(k+2)*(k+3)*G(k+3);
f*d2f=sum((k-r+1)*(k-r+2)*F(r)*F(k-r+2),r,0,k);g*d2g=sum((k-r+1)*(k-r+2)*G(r)*G(k-r+2),r,0,k);
f*d2g=sum((k-r+1)*(k-r+2)*F(r)*G(k-r+2),r,0,k);g*d2f=sum((k-r+1)*(k-r+2)*G(r)*F(k-r+2),r,0,k);
(d1f)^2=sum((k-r+1)*(r+1)*F(r+1)*F(k-r+1),r,0,k);(d1g)^2=sum((k-r+1)*(r+1)*G(r+1)*G(k-r+1),r,0,k);
eqns=simplify((1+b1)*d3f-(d1f)^2+f*d2f+g*d2f-(M+L)*d1f==0,(1+b1)*d3g-(d1g)^2+f*d2g+g*d2g-(M+L)*d1g==0)
Rsolve(eqns,{F(k+3),G(k+2)});
%% I want a recurrence relation in terms of F(k+3) and G(k+2) (k = 0 -> Inf) but unable to code it properly

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by