How can I display multiple Images and plot the centroid ?

3 次查看(过去 30 天)
I have this code which finds the centroid and plots it, how can i do the same but for multiple images and display them?
I have also posted my attempt which is a mess, it shows no errors, but it only displays the last image due to the for loop I'm guesssing.
clear;
close all;
clc;
I = imread('C:\DilatedRedBeanv0.png');
Ibw = im2bw(I);
Ibw = imfill(Ibw,'holes');
Ilabel = bwlabel(Ibw);
stat = regionprops(Ilabel,'centroid');
imshow(I); hold on;
for x = 1: numel(stat)
plot(stat(x).Centroid(1),stat(x).Centroid(2),'ro');
end
X = (stat(x).Centroid(1));
Y = (stat(x).Centroid(2));
[rows, columns, numberOfColorChannels] = size(Ibw); %finding center of image
y_center = rows / 2;
x_center = columns / 2;
Pos= [X Y;x_center y_center];
EuclideanDistance=pdist(Pos, 'euclidean'); %Calculates euclidean distance from centroid to the center of image
CityblockDistance=pdist(Pos, 'cityblock'); %Calculates cityblock distance from centroid to the center of image
CityblockFormula = (X-x_center)+(Y-y_center);
Distance= sqrt((x_center-X)^2+(y_center-Y)^2);
%MY ATTEMPT AT PLOTTING THE CENTROID IN MULTIPLE IMAGES
clear;
close all;
clc;
I = imread('C:\DilatedRedBeanv0.png');%Red Bean
I2 = imread('C:\ClosedGreenBeanv0.png'); % Green Bean
I3 = imread('C:\DilatedWhiteBeanv0.png'); %White Bean
I4 = imread('C:\DilatedYellowBeanv0.png'); %Yellow Bean
%Making the images Binary
Ibw = im2bw(I);
Ibw2 = im2bw(I2);
Ibw3 = im2bw(I3);
Ibw4 = im2bw(I4);
Ibw = imfill(Ibw,'holes');
Ibw2 = imfill(Ibw2,'holes');
Ibw3 = imfill(Ibw3,'holes');
Ibw4 = imfill(Ibw4,'holes');
Ilabel = bwlabel(Ibw);
Ilabel2 = bwlabel(Ibw2);
Ilabel3 = bwlabel(Ibw3);
Ilabel4 = bwlabel(Ibw4);
stat = regionprops(Ilabel,'centroid');
imshow(I); hold on;
for x = 1: numel(stat)
plot(stat(x).Centroid(1),stat(x).Centroid(2),'ro');
end
stat2 = regionprops(Ilabel2,'centroid');
imshow(I2); hold on;
for x2 = 1: numel(stat2)
plot(stat2(x2).Centroid(1),stat2(x2).Centroid(2),'ro');
end
stat3 = regionprops(Ilabel3,'centroid');
imshow(I3); hold on;
for x3 = 1: numel(stat3)
plot(stat3(x3).Centroid(1),stat3(x3).Centroid(2),'ro');
end
stat4 = regionprops(Ilabel4,'centroid');
imshow(I4); hold on;
for x4 = 1: numel(stat4)
plot(stat4(x4).Centroid(1),stat4(x4).Centroid(2),'ro');
end
X = (stat(x).Centroid(1));
Y = (stat(x).Centroid(2));
X2 = (stat2(x).Centroid(1));
Y2 = (stat2(x).Centroid(2));
X3 = (stat3(x).Centroid(1));
Y3 = (stat3(x).Centroid(2));
X4 = (stat4(x).Centroid(1));
Y4 = (stat4(x).Centroid(2));
[rows, columns, numberOfColorChannels] = size(Ibw); %finding center of image
y_center = rows / 2;
x_center = columns / 2;
[rows, columns, numberOfColorChannels2] = size(Ibw2);
y2_center = rows / 2;
x2_center = columns / 2;
[rows, columns, numberOfColorChannels3] = size(Ibw3);
y3_center = rows / 2;
x3_center = columns / 2;
[rows, columns, numberOfColorChannels4] = size(Ibw4);
y4_center = rows / 2;
x4_center = columns / 2;

回答(1 个)

Meg Noah
Meg Noah 2020-1-11
I played with the first part to make some more plot options (I had to do the poor man's distances because I can't afford the stats toolbox required to do basic image processing that is not included in the image processing toolbox):
clear all;
close all;
clc;
I = imread('DilatedRedBeanv0.png');
Ibw = im2bw(I);
Ibw = imfill(Ibw,'holes');
Ilabel = bwlabel(Ibw);
stat = regionprops(Ilabel,'centroid');
fig1 = figure('color','white','position',[33 348 680 570]);
imagesc(1:size(I,2),1:size(I,1),I); hold on;
set(gca,'ydir','normal');
axis equal; axis tight;
for x = 1: numel(stat)
plot(stat(x).Centroid(1),stat(x).Centroid(2),'ro','MarkerFaceColor','r', ...
'DisplayName',['Dilated Red Bean v0 Centroid = (' ...
num2str(stat(x).Centroid(1)) ',' ...
num2str(stat(x).Centroid(2)) ')']);
end
X = (stat(x).Centroid(1));
Y = (stat(x).Centroid(2));
[rows, columns, numberOfColorChannels] = size(Ibw); %finding center of image
y_center = rows / 2;
x_center = columns / 2;
Pos= [X Y;x_center y_center];
EuclideanDistance = sqrt((X-x_center).^2+(Y-y_center).^2);
CityblockDistance = sum(abs(X-x_center) + abs(Y-y_center));
% EuclideanDistance=pdist(Pos, 'euclidean'); %Calculates euclidean distance from centroid to the center of image
% CityblockDistance=pdist(Pos, 'cityblock'); %Calculates cityblock distance from centroid to the center of image
CityblockFormula = (X-x_center)+(Y-y_center);
Distance= sqrt((x_center-X)^2+(y_center-Y)^2);
% distance to center
plot([x_center X],[y_center Y],'c','DisplayName',['Euclidean Distance = ' num2str(EuclideanDistance)]);
plot([x_center x_center x_center X],[y_center Y Y Y],'g','DisplayName',['Cityblock Distance = ' num2str(CityblockDistance)]);
legend('location','best');
bean1.png
So this function simplifies things:
function [I,Ilabel,stat] = processBeanImage(filename)
I = imread(filename);
%Making the images Binary
Ibw = im2bw(I);
Ibw = imfill(Ibw,'holes');
Ilabel = bwlabel(Ibw);
stat = regionprops(Ilabel,'centroid');
end
Then your processing multiple beans is:
fig2 = figure('color','white','position',[33 0 900 900]);
fileList = {'DilatedRedBeanv0.png';'ClosedGreenBeanv0.png'; ...
'DilatedWhiteBeanv0.png';'DilatedYellowBeanv0.png';};
for ifile = 1:length(fileList)
[I,Ilabel,stat] = processBeanImage(fileList{ifile});
subplot(2,2,ifile)
imagesc(Ilabel); hold on;
title([fileList{ifile} ' has ' num2str(numel(stat)) ' centroids']);
for j = 1: numel(stat)
plot(stat(j).Centroid(1),stat(j).Centroid(2),'ro');
end
end
bean2.png

类别

Help CenterFile Exchange 中查找有关 Matrix Indexing 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by