Augmentations via Rotation, Shearing, Scaling, Reflection
6 次查看(过去 30 天)
显示 更早的评论
Hi professionals,
I am trying to code the augmentation for a small dataset and would like to perform Augmentations via Rotation, Shearing, Scaling, Reflection for adding accuracy and efficiency with my classification process!
I am having a challenge to understand the affine function as this is constantly arguing for the correct variable. I have implemented and followed the example from here!!https://uk.mathworks.com/help/deeplearning/examples/bounding-box-augmentation-using-computer-vision-toolbox.html?searchHighlight=augmented%20rotation%2C%20shearing%2C%20scaling&s_tid=doc_srchtitle
The affine command constantly argues but this is the exact example from the matlab link provided!!
Can a professional guide me please?
tform = randomAffine2d("Rotation",[-50 50]);
my error is:
Undefined function or variable 'randomAffine2d'.
my code:
clearvars
clear
close all
clc
net =alexnet;
%% Step 1 Creating Filenames /Loading Data
load('SgTruth.mat');
load('RCNNLayers.mat');
load('Alexnlayers.mat');
save Alexnlayers.mat net;
save RCNNLayers.mat net;
save rcnnGuns.mat SgTruth
load('rcnnGuns.mat', 'SgTruth', 'net')
inputSize =net.Layers(1).InputSize
net.Layers
total_images = size(SgTruth,1);
%% Step 3 Adding Image Directory For Path To Image Data
imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata','gunsGT')
addpath(imDir)
%% Step 4 Accessing Contents Of Folder TrainingSet Using Datastore
imds =imageDatastore(imDir,'IncludeSubFolders',true,'LabelSource','Foldernames')
%% Step 5 Splitting Inputs Into Training and Testing Sets
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized')
disp('The Size Of Images Are')
size(imdsTrain)
%% Step 12 Replacing Final Layer/Last 3 Configure For Network classes
layersTransfer = net.Layers(1:end-3);
%% Step 13 Specifying Image Categories/Clases:
numClasses = numel(categories(imdsTrain.Labels));
Tlayers = [
layersTransfer
fullyConnectedLayer(1,'Name','fc8','WeightLearnRateFactor',10,'BiasLearnRateFactor',10);
softmaxLayer('name', 'Softmax')
classificationLayer('Name','ClassfLay')];
%% Warp Image & Pixel Labels
% Creates A Randomized 2-D Affine Transformation From A Combination Of Rotation,
% Rotate Input Properties By An Angle Selected Randomly From Range [-50,50] Degrees.
pixelRange = [-30 30];
[imdsTrain,imdsValidation] = digitTrain4DArrayData;
imageAugmenter = imageDataAugmenter('RandRotation',[-180 180],...
'RandXReflection',true,...
'RandYReflection',true,...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange)
augimdsTrain = augmentedImageSource(inputSize(1:2),imdsTrain,imdsValidation,...
'DataAugmentation',imageAugmenter)
augimdsTrain.MiniBatchSize = 16
augimdsTrain.reset()
tform1 = randomAffine2d('Rotation',[35 55]);
0 个评论
回答(1 个)
Bhargavi Maganuru
2020-2-12
I guess you’re using earlier version of MATLAB. The function ‘randomAffine2d’ is a new feature introduce in R2019b release, so you would get error if you’re using it in earlier versions.
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!