get the x-value of a point on curve

15 次查看(过去 30 天)
I draw a curve between two vector of points, not a function, how can I get the x-value of a certain y-value of the curve?
  2 个评论
ahmed salah
ahmed salah 2020-2-20
here is the curve
x=[0,0.250000000000000,0.500000000000000,0.750000000000000,1,1.25000000000000,1.50000000000000,1.75000000000000,2,2.25000000000000,2.50000000000000,2.75000000000000,3,3.25000000000000,3.50000000000000,3.75000000000000,4,4.25000000000000,4.50000000000000,4.75000000000000,5,5.25000000000000,5.50000000000000,5.75000000000000,6,6.25000000000000,6.50000000000000,6.75000000000000,7,7.25000000000000,7.50000000000000,7.75000000000000,8,8.25000000000000,8.50000000000000,8.75000000000000,9,9.25000000000000,9.50000000000000,9.75000000000000,10,10.2500000000000,10.5000000000000,10.7500000000000,11,11.2500000000000,11.5000000000000,11.7500000000000,12,12.2500000000000,12.5000000000000,12.7500000000000,13,13.2500000000000,13.5000000000000,13.7500000000000,14,14.2500000000000,14.5000000000000,14.7500000000000,15,15.2500000000000,15.5000000000000,15.7500000000000,16,16.2500000000000,16.5000000000000,16.7500000000000,17,17.2500000000000,17.5000000000000,17.7500000000000,18,18.2500000000000,18.5000000000000,18.7500000000000,19,19.2500000000000,19.5000000000000,19.7500000000000,20,20.2500000000000,20.5000000000000,20.7500000000000,21,21.2500000000000,21.5000000000000,21.7500000000000,22,22.2500000000000,22.5000000000000,22.7500000000000,23,23.2500000000000,23.5000000000000,23.7500000000000,24,24.2500000000000,24.5000000000000,24.7500000000000,25,25.2500000000000,25.5000000000000,25.7500000000000,26,26.2500000000000,26.5000000000000,26.7500000000000,27,27.2500000000000,27.5000000000000,27.7500000000000,28,28.2500000000000,28.5000000000000,28.7500000000000,29,29.2500000000000,29.5000000000000,29.7500000000000,30,30.2500000000000,30.5000000000000,30.7500000000000,31,31.2500000000000,31.5000000000000,31.7500000000000,32,32.2500000000000,32.5000000000000,32.7500000000000,33,33.2500000000000,33.5000000000000,33.7500000000000,34,34.2500000000000,34.5000000000000,34.7500000000000,35,35.2500000000000,35.5000000000000,35.7500000000000,36,36.2500000000000,36.5000000000000,36.7500000000000,37,37.2500000000000,37.5000000000000,37.7500000000000,38,38.2500000000000,38.5000000000000,38.7500000000000,39,39.2500000000000,39.5000000000000,39.7500000000000,40,40.2500000000000,40.5000000000000,40.7500000000000,41,41.2500000000000,41.5000000000000,41.7500000000000,42,42.2500000000000,42.5000000000000,42.7500000000000,43,43.2500000000000,43.5000000000000,43.7500000000000,44,44.2500000000000,44.5000000000000,44.7500000000000,45,45.2500000000000,45.5000000000000,45.7500000000000,46,46.2500000000000,46.5000000000000,46.7500000000000,47,47.2500000000000,47.5000000000000,47.7500000000000,48,48.2500000000000,48.5000000000000,48.7500000000000,49,49.2500000000000,49.5000000000000,49.7500000000000,50,50.2500000000000,50.5000000000000,50.7500000000000,51,51.2500000000000,51.5000000000000,51.7500000000000,52,52.2500000000000,52.5000000000000,52.7500000000000,53,53.2500000000000,53.5000000000000,53.7500000000000,54,54.2500000000000,54.5000000000000,54.7500000000000,55,55.2500000000000,55.5000000000000,55.7500000000000,56,56.2500000000000,56.5000000000000,56.7500000000000,57,57.2500000000000,57.5000000000000,57.7500000000000,58,58.2500000000000,58.5000000000000,58.7500000000000,59,59.2500000000000,59.5000000000000,59.7500000000000,60,60.2500000000000,60.5000000000000,60.7500000000000,61,61.2500000000000,61.5000000000000,61.7500000000000,62,62.2500000000000,62.5000000000000,62.7500000000000,63,63.2500000000000,63.5000000000000,63.7500000000000,64,64.2500000000000,64.5000000000000,64.7500000000000,65,65.2500000000000,65.5000000000000,65.7500000000000,66,66.2500000000000,66.5000000000000,66.7500000000000,67,67.2500000000000,67.5000000000000,67.7500000000000,68,68.2500000000000,68.5000000000000,68.7500000000000,69,69.2500000000000,69.5000000000000,69.7500000000000,70,70.2500000000000,70.5000000000000,70.7500000000000,71,71.2500000000000,71.5000000000000,71.7500000000000,72,72.2500000000000,72.5000000000000,72.7500000000000,73,73.2500000000000,73.5000000000000,73.7500000000000,74,74.2500000000000,74.5000000000000,74.7500000000000,75,75.2500000000000,75.5000000000000,75.7500000000000,76,76.2500000000000,76.5000000000000,76.7500000000000,77,77.2500000000000,77.5000000000000,77.7500000000000,78,78.2500000000000,78.5000000000000,78.7500000000000,79,79.2500000000000,79.5000000000000,79.7500000000000,80];
y=[-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-1000000000.00000;-999023914.181976;-996101369.470118;-991249448.402318;-984496437.005408;-975881550.135659;-965454552.197838;-953275278.375072;-939413062.813476;-923946081.405808;-906960617.887384;-888550262.878127;-868815056.262843;-847860583.886983;-825797039.950101;-802738266.700420;-778800783.071405;-754102813.758623;-728763329.919491;-702901112.199745;-676633846.161729;-650077259.426284;-623344308.959634;-596544425.958485;-569782824.730923;-543159880.858705;-516770582.779577;-490704059.767441;-465043188.134056;-439864276.347883;-415236828.681841;-391223385.978341;-367879441.171442;-345253426.344544;-323386767.337505;-302314001.257049;-282062951.693815;-262654956.011189;-244105138.745554;-226422724.943098;-209611387.151098;-193669619.776293;-178591134.612436;-164365271.515199;-150977418.455915;-138409435.506143;-126640077.682188;-115645412.001621;-105399224.561864;-95873413.9333128;-87038367.6562235;-78863319.1321027;-71316682.6977580;-64366365.1556118;-57980052.5002544;-52125471.0225585;-46770622.3839590;-41883992.6308008;-37434735.4590011;-33392830.3407140;-29729216.3861588;-26415903.0350821;-23426058.8540209;-20734079.8588388;-18315638.8887342;-16147717.6303287;-14208622.9311963;-12477989.0542226;-10936767.5106050;-9567206.07335306;-8352818.51808101;-7278346.56690364;-6329715.42748575;-5493984.22569959;-4759292.52969696;-4114804.05804821;-3550648.55724255;-3057862.72632757;-2628330.96056771;-2254726.58323161;-1930454.13622771;-1649593.20729371;-1406844.18457416;-1197476.24923513;-1017277.84361470;-862509.786462451;-729861.148096995;-616407.946691314;-519574.682154838;-437098.685902352;-366997.232797294;-307537.335293304;-257208.118800665;-214695.661081271;-178860.166527008;-148715.338006110;-123409.804086680;-102210.457403375;-84487.5602850465;-69701.4761011665;-57390.8887394688;-47162.3778574823;-38681.2237531849;-31663.3226067570;-25868.1002226541;-21092.3200481345;-17164.6889911202;-13941.1722657260;-11300.9360431463;-9142.84398775726;-7382.44074333424;-5949.36205084747;-4785.11739212903;-3841.19684131568;-3077.45915842322;-2460.76307630544;-1963.80822089881;-1564.15617842291;-1243.40590008523;-986.500936172905;-781.148940830449;-617.336511316966;-486.924746716508;-383.312956548538;-301.159744605734;-236.152261880159;-184.815787720481;-144.356982138370;-112.535174719259;-87.5569356105099;-67.9899287062702;-52.6926920127339;-40.7575393356832;-31.4642435108093;-24.2425556547795;-18.6419473328348;-14.3072419185677;-10.9590354849177;-8.37800305312445;-6.39234879527583;-4.86779390210820;-3.69960765354966;-2.80627950629673;-2.12450593559293;-1.60522805518561;-1.21050699313975;-0.911065565816399;-0.684358602861398;-0.513061702609176;-0.383890383971262;-0.286679499687312;-0.213667176299877;-0.158939100945165;-0.117998221631021;-0.0874323075473376;-0.0646576904591947;-0.0477221722017458;-0.0351537765491551;-0.0258449407447336;-0.0189640399835250;-0.0138879438649640;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000;1000000000.00000];
plot(x,y)

请先登录,再进行评论。

采纳的回答

the cyclist
the cyclist 2020-2-20
When you say "get", do you mean from the vectors, or only from the curve?
If you mean from the data, you can do, for example
x(y==0.25)
(You might need to be careful if y is not exactly 0.25, due to floating point precision.)
  2 个评论
the cyclist
the cyclist 2020-2-20
My solution assumes the y value you are looking for is in the original vector. Sky Sartorius's solution is preferred if the y value is not in the original vector, but you want to interpolate.

请先登录,再进行评论。

更多回答(1 个)

Sky Sartorius
Sky Sartorius 2020-2-20
This is a table lookup / interpolation problem. For your data, you'll first have to make sure there aren't any repeated y values.
yQuery = -2.6e8; % Example query point.
[Y,ind] = unique(y,'stable')
X = x(ind);
x = interp1(Y,X,yQuery)
  2 个评论
the cyclist
the cyclist 2020-2-20
The best way to thank a contributor is to upvote and/or accept their answer. This rewards them with reputation points, and also directs future users to solutions.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Interpolation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by