optimal values for cell data
4 次查看(过去 30 天)
显示 更早的评论
4 个评论
Walter Roberson
2020-3-10
- Every student claims that their code is "sensitive" on the grounds that other students might read the posting and copy from them.
- There are no National Security considerations here.
- If there are Trade Secret matters here, then legally speaking you destroyed the "secret" as soon as you posted the material (Trade Secret case law is really strict on that point. Like if a piece of paper with a Trade Secret blows out of your hand and someone finds it, then you have just lost Trade Secret status.)
- You would have a difficult time convincing us that you are working on a Patent: people working on Patents know to hire consultants with Non-Disclosure Agreements
When I look at your previous postings, the most generous reading I can come up with is that you must might be working on a thesis. For thesis, the important part is that the ideas are yours; it is permitted to seek assistance with implementation .
采纳的回答
Nipun Katyal
2020-3-5
Yeah there is some problem while handling the cell
Here is the correct way to handle it
% Make some data
Daten = rand(100, 3);
Daten(:,3) = Daten(:,1) + Daten(:,2) + .1*randn(100, 1); % Minimum asymptotic error is .1
[m,n] = size(Daten) ;
% Split into train and test
P = 0.7 ;
Training = Daten(1:round(P*m),:) ;
Testing = Daten(round(P*m)+1:end,:);
XTr = Training(:,1:n-1);
YTr = Training(:,n);
XTe = Testing(:,1:n-1);
YTe = Testing(:,n);
XTrain=num2cell(XTr(:,1));
YTrain=num2cell(YTr(:,1));
XTest=num2cell(XTe);
YTest=num2cell(YTe);
% Define a train/validation split to use inside the objective function
cv = cvpartition(numel(YTrain), 'Holdout', 1/3);
% Define hyperparameters to optimize
vars = [optimizableVariable('hiddenLayerSize', [1,20], 'Type', 'integer');
optimizableVariable('lr', [1e-3 1], 'Transform', 'log')];
% Optimize
minfn = @(T)kfoldLoss(XTrain', YTrain', cv, T.hiddenLayerSize, T.lr);
results = bayesopt(minfn, vars,'IsObjectiveDeterministic', false,...
'AcquisitionFunctionName', 'expected-improvement-plus');
T = bestPoint(results);
function rmse = kfoldLoss(x, y, cv, numHid, lr)
% Train net.
net = feedforwardnet(numHid, 'traingd');
net.trainParam.lr = lr;
net = train(net, x(:,cv.training), y(:,cv.training));
% Evaluate on validation set and compute rmse
ypred = net(x(:, cv.test));
n = size(ypred);
pw = 2*ones(n);
pw = num2cell(pw);
cMinus = cellfun(@minus, ypred, y(cv.test), 'UniformOutput', false);
cSquare = cellfun(@power, cMinus, pw, 'UniformOutput', false);
cSquareVect = cell2mat(cSquare);
cMean = mean(cSquareVect);
rmse = sqrt(cMean);
%rmse = sqrt(mean((ypred - y(cv.test)).^2));
end
4 个评论
Nipun Katyal
2020-3-9
This should do
% Make some data
Daten = rand(100, 3);
Daten(:,3) = Daten(:,1) + Daten(:,2) + .1*randn(100, 1); % Minimum asymptotic error is .1
[m,n] = size(Daten) ;
% Split into train and test
P = 0.7 ;
Training = Daten(1:round(P*m),:) ;
Testing = Daten(round(P*m)+1:end,:);
XTr = Training(:,1:n-1);
YTr = Training(:,n);
XTe = Testing(:,1:n-1);
YTe = Testing(:,n);
XTrain=num2cell(XTr(:,1));
YTrain=num2cell(YTr(:,1));
XTest=num2cell(XTe);
YTest=num2cell(YTe);
% Define a train/validation split to use inside the objective function
cv = cvpartition(numel(YTrain), 'Holdout', 1/3);
% Define hyperparameters to optimize
vars = [optimizableVariable('hiddenLayerSize', [1,20], 'Type', 'integer');
optimizableVariable('lr', [1e-3 1e-1], 'Transform', 'log')];
% Optimize
minfn = @(T)kfoldLoss(XTrain', YTrain', cv, T.hiddenLayerSize, T.lr);
results = bayesopt(minfn, vars,'IsObjectiveDeterministic', false,...
'AcquisitionFunctionName', 'expected-improvement-plus');
T = bestPoint(results);
% Train final model on full training set using the best hyperparameters
net = layrecnet(1:2,T.hiddenLayerSize, 'traingd');
net.trainParam.lr = T.lr;
net = train(net, XTrain', YTrain');
% Evaluate on test set and compute final rmse
% ypred = net(XTest');
% finalrmse = sqrt(mean((ypred - YTest').^2))
% Evaluate on validation set and compute rmse
ypred = net(XTest(:,1)');
n = size(ypred);
pw = 2*ones(n);
pw = num2cell(pw);
cMinus = cellfun(@minus, ypred, YTest', 'UniformOutput', false);
cSquare = cellfun(@power, cMinus, pw, 'UniformOutput', false);
cSquareVect = cell2mat(cSquare);
cMean = mean(cSquareVect);
Rmse = sqrt(cMean)
function rmse = kfoldLoss(x, y, cv, numHid, lr)
% Train net.
net = feedforwardnet(numHid, 'traingd');
net.trainParam.lr = lr;
net = train(net, x(:,cv.training), y(:,cv.training));
% Evaluate on validation set and compute rmse
ypred = net(x(:, cv.test));
n = size(ypred);
pw = 2*ones(n);
pw = num2cell(pw);
cMinus = cellfun(@minus, ypred, y(cv.test), 'UniformOutput', false);
cSquare = cellfun(@power, cMinus, pw, 'UniformOutput', false);
cSquareVect = cell2mat(cSquare);
cMean = mean(cSquareVect);
rmse = sqrt(cMean);
%rmse = sqrt(mean((ypred - y(cv.test)).^2));
end
更多回答(1 个)
Nipun Katyal
2020-3-4
Inorder to perform operations on cells use cellfun as mentioned below:
% Make some data
Daten = rand(100, 3);
Daten(:,3) = Daten(:,1) + Daten(:,2) + .1*randn(100, 1); % Minimum asymptotic error is .1
[m,n] = size(Daten) ;
% Split into train and test
P = 0.7 ;
Training = Daten(1:round(P*m),:) ;
Testing = Daten(round(P*m)+1:end,:);
XTr = Training(:,1:n-1);
YTr = Training(:,n);
XTe = Testing(:,1:n-1);
YTe = Testing(:,n);
XTrain=num2cell(XTr(:,1));
YTrain=num2cell(YTr(:,1));
XTest=num2cell(XTe);
YTest=num2cell(YTe);
% Define a train/validation split to use inside the objective function
cv = cvpartition(numel(YTrain), 'Holdout', 1/3);
% Define hyperparameters to optimize
vars = [optimizableVariable('hiddenLayerSize', [1,20], 'Type', 'integer');
optimizableVariable('lr', [1e-3 1], 'Transform', 'log')];
% Optimize
minfn = @(T)kfoldLoss(XTrain', YTrain', cv, T.hiddenLayerSize, T.lr);
results = bayesopt(minfn, vars,'IsObjectiveDeterministic', false,...
'AcquisitionFunctionName', 'expected-improvement-plus');
T = bestPoint(results);
function rmse = kfoldLoss(x, y, cv, numHid, lr)
% Train net.
net = feedforwardnet(numHid, 'traingd');
net.trainParam.lr = lr;
net = train(net, x(:,cv.training), y(:,cv.training));
% Evaluate on validation set and compute rmse
ypred = net(x(:, cv.test));
cMinus = cellfun(@minus, ypred, y(cv.test), 'UniformOutput', false);
cMean = cellfun(@mean, cMinus);
rmse = sqrt(cMean);
%rmse = sqrt(mean((ypred - y(cv.test)).^2));
end
1 个评论
Nipun Katyal
2020-3-4
In your case the rmse function will be:
function rmse = kfoldLoss(x, y, cv, numHid, lr)
% Train net.
net = feedforwardnet(numHid, 'traingd');
net.trainParam.lr = lr;
net = train(net, x(:,cv.training), y(:,cv.training));
% Evaluate on validation set and compute rmse
ypred = net(x(:, cv.test));
n = size(ypred);
pw = 2*ones(n);
pw = num2cell(pw);
cMinus = cellfun(@minus, ypred, y(cv.test), 'UniformOutput', false);
cSquare = cellfun(@power, cMinus, pw, 'UniformOutput', false);
cMean = cellfun(@mean, cSquare);
rmse = sqrt(cMean);
%rmse = sqrt(mean((ypred - y(cv.test)).^2));
end
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!