Coding a function to use the false position method to approximate roots

7 次查看(过去 30 天)
Im trying to code together a function to approximate roots using the false psotion method. My current issues is that I can't understand how I should go about plugging in a polynomial into matlab in a standard form.
function [root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)
%falsePosition finds the root of a function using false position method
%please input the func value in this format ((8x^4)-(2x^2)+x)---->[8 0 -2 1]
if nargin <3
error('3 or more arguements required')
elseif nargin<4
es=.0001;
maxit=200;
end
plop=1;
for iter= 1:maxit
if plop==1;
root1= xl-(((polyval(func,xl))*(xu-xl))/((polyval(func,xu))-(polyval(func,xl))));
xu=root1;
plop=2;
ea=10000000;
elseif ea>es
root2= xl-(((polyval(func,xl))*(xu-xl))/((polyval(func,xu))-(polyval(func,xl))));
ea=((root2-root1)/root2)*100;
xu=root2;
else
break
end
end
I need to be able to plug in xu and xl into the equation, and I need to be able to plug the equation into the function in the form of ((3*x^3)+(8*x^2)*1) and not in the form of an array as [3 8 1]
  2 个评论
Aaron Atkinson
Aaron Atkinson 2020-3-1
I think I need to clarify, the primary issue I am having is translating the entered equation into something usable by matlab, how should I do this?
Walter Roberson
Walter Roberson 2021-12-26
((8x^4)-(2x^2)+x) should be [8 0 -2 1 0] not [8 0 -2 1] -- the 0 at the end is the constant coefficient.

请先登录,再进行评论。

回答(1 个)

darova
darova 2020-3-2
try matlabFunction
str = input('enter a function:\n');
f = matlabFunction(str);

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differentiation 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by