How to Perform Gradient Descent for DQN Loss Function
2 次查看(过去 30 天)
显示 更早的评论
I'm writing the DQN from scratch, and I'm confused of the procedure of updating the evaluateNet from the gradient descent.
The standard DQN algorithm is to define two networks:
. Train
with minibatch, and update the
with gradient descent step on 
I define
. When update the
, I first make the
, and then only update
, which guarantee the
. Then I update the
. If I choose the feedforward train method as '
', does [1] update the evalNet correctly via gradient descent?
0 个评论
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!